• Previous Article
    A common set of weight approach using an ideal decision making unit in data envelopment analysis
  • JIMO Home
  • This Issue
  • Next Article
    Worst-case performance of the successive approximation algorithm for four identical knapsacks
July  2012, 8(3): 639-649. doi: 10.3934/jimo.2012.8.639

An extended lifetime measure for telecommunications networks: Improvements and implementations

1. 

Centre for Informatics and Applied Optimization, The School of Science, Information Technology and Engineering, University of Ballarat, Victoria, Australia

2. 

ARC Special Research Centre for Ultra-Broadband Information Networks (CUBIN), Electrical and Electronic Engineering (EEE) Department, The University of Melbourne, Victoria 3010, Australia, Australia

Received  September 2011 Revised  January 2012 Published  June 2012

Predicting the lifetime of a network is a stochastic and very hard task. Sensitivity analysis of a network in order to identify the weakest points in the network, provides valuable knowledge to draw an optimum investment strategy for the expansion of the networks for the network carriers. To achieve this goal, a new measure, called topology lifetime, was recently proposed for measuring the performance of a telecommunication network. This measure not only allows to perform a sensitivity analysis of the networks, but also it provides the means to compare the different topologies with respect to the ability of the network in supporting growth in network traffic before new capacity/facility is installed. This paper addresses some improvements upon the previously defined measures and presents the implementation results of the various lifetime measure methodologies. Computational analysis on some commonly used topologies show how the new measure can be utilized in assessing network performance.
Citation: Zari Dzalilov, Iradj Ouveysi, Tolga Bektaş. An extended lifetime measure for telecommunications networks: Improvements and implementations. Journal of Industrial & Management Optimization, 2012, 8 (3) : 639-649. doi: 10.3934/jimo.2012.8.639
References:
[1]

Z. Dzalilov, I. Ouveysi and A. Rubinov, A lifetime measure for telecommunication network: Theoretical aspects,, in, (2003), 75.

[2]

Z. Dzalilov, I. Ouveysi and A. Rubinov, An extended lifetime measure for telecommunication network,, Journal of Industrial and Management Optimization, 4 (2008), 329.

[3]

N. F. Maxemchuk, I. Ouveysi and M. Zukerman, A quantitative measure for telecommunications networks topology design,, IEEE/ACM Transactions on Networking, 13 (2005), 731. doi: 10.1109/TNET.2005.852889.

show all references

References:
[1]

Z. Dzalilov, I. Ouveysi and A. Rubinov, A lifetime measure for telecommunication network: Theoretical aspects,, in, (2003), 75.

[2]

Z. Dzalilov, I. Ouveysi and A. Rubinov, An extended lifetime measure for telecommunication network,, Journal of Industrial and Management Optimization, 4 (2008), 329.

[3]

N. F. Maxemchuk, I. Ouveysi and M. Zukerman, A quantitative measure for telecommunications networks topology design,, IEEE/ACM Transactions on Networking, 13 (2005), 731. doi: 10.1109/TNET.2005.852889.

[1]

Zari Dzalilov, Iradj Ouveysi, Alexander Rubinov. An extended lifetime measure for telecommunication network. Journal of Industrial & Management Optimization, 2008, 4 (2) : 329-337. doi: 10.3934/jimo.2008.4.329

[2]

Mahmoud Ameri, Armin Jarrahi. An executive model for network-level pavement maintenance and rehabilitation planning based on linear integer programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018179

[3]

Sebastià Galmés. Markovian characterization of node lifetime in a time-driven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763-780. doi: 10.3934/naco.2011.1.763

[4]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[5]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[6]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[7]

Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial & Management Optimization, 2014, 10 (3) : 817-826. doi: 10.3934/jimo.2014.10.817

[8]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[9]

Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003

[10]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019041

[11]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[12]

Shunfu Jin, Wuyi Yue. Performance analysis and evaluation for power saving class type III in IEEE 802.16e network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 691-708. doi: 10.3934/jimo.2010.6.691

[13]

Sangkyu Baek, Bong Dae Choi. Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network. Journal of Industrial & Management Optimization, 2009, 5 (3) : 481-492. doi: 10.3934/jimo.2009.5.481

[14]

Dengfeng Sun, Issam S. Strub, Alexandre M. Bayen. Comparison of the performance of four Eulerian network flow models for strategic air traffic management. Networks & Heterogeneous Media, 2007, 2 (4) : 569-595. doi: 10.3934/nhm.2007.2.569

[15]

Shengzhu Jin, Bong Dae Choi, Doo Seop Eom. Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1483-1494. doi: 10.3934/jimo.2017003

[16]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[17]

Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-18. doi: 10.3934/jimo.2018107

[18]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial & Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[19]

Idan Goldenberg, David Burshtein. Error bounds for repeat-accumulate codes decoded via linear programming. Advances in Mathematics of Communications, 2011, 5 (4) : 555-570. doi: 10.3934/amc.2011.5.555

[20]

Jiang-Xia Nan, Deng-Feng Li. Linear programming technique for solving interval-valued constraint matrix games. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1059-1070. doi: 10.3934/jimo.2014.10.1059

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]