-
Previous Article
Optimal reinsurance-investment strategies for insurers under mean-CaR criteria
- JIMO Home
- This Issue
-
Next Article
Worst-case performance of the successive approximation algorithm for four identical knapsacks
Integrated inventory model with stochastic lead time and controllable variability for milk runs
1. | Department of Customs Management, Shanghai Customs College, Shanghai, 201204, China, China, China |
References:
[1] |
M. Ben-Daya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time,, International Journal of Production Economics, 92 (2004), 75.
doi: 10.1016/j.ijpe.2003.09.012. |
[2] |
H. Chang, L. Ouyang, K. Wu and C. Ho, Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction,, European Journal of Operational Research, 170 (2006), 481.
doi: 10.1016/j.ejor.2004.06.029. |
[3] |
J. M. Chen and T. Chen, The multi-item replenishment problem in a two-echelon supply chain: the effect of centralization versus decentralization,, Computers and Operations Research, 32 (2005), 3191.
doi: 10.1016/j.cor.2004.05.007. |
[4] |
S. Chopra, G. Reinhardt and M. Dada, The effect of lead time uncertainty on safety stocks,, Decision Sciences, 35 (2004), 1.
doi: 10.1111/j.1540-5414.2004.02332.x. |
[5] |
C. F. Daganzo, The distance traveled to visit N points with a maximum of C stops per vehicle: An analytic model and an application,, Transportation Science, 18 (1984), 331.
doi: 10.1287/trsc.18.4.331. |
[6] |
T. Du, F. K. Wang and P. Lu, A real-time vehicle-dispatching system for consolidating milk runs,, Transportation Research, 43 (2007), 565.
doi: 10.1016/j.tre.2006.03.001. |
[7] |
Y. Gerchak and M. Parlar, Investing in reducing lead-time randomness in continuous-review inventory models,, Engineering Costs and Production Economics, 21 (1991), 191.
doi: 10.1016/0167-188X(91)90032-W. |
[8] |
C. H. Glock, A comment: "Integrated single vendor-single buyer model with stochastic demand and variable lead time,", International Journal of Production Research, 122 (2009), 790.
doi: 10.1016/j.ijpe.2009.06.032. |
[9] |
C. H. Glock, The joint economic lot size problem: A review,, International Journal of Production Economics, 135 (2012), 671.
doi: 10.1016/j.ijpe.2011.10.026. |
[10] |
S. K. Goyal, A joint economic-lot-size model for purchaser and vendor: A comment,, Decision Sciences, 19 (1988), 236.
doi: 10.1111/j.1540-5915.1988.tb00264.x. |
[11] |
M. G. Guler and T. Bilgic, On coordinating an assembly system under random yield and random demand,, European Journal of Operational Research, 196 (2009), 342.
doi: 10.1016/j.ejor.2008.03.002. |
[12] |
M. Hariga and M. Ben-Daya, Some stochastic inventory models with deterministic variable lead time,, European Journal of Operational Research, 113 (1999), 42.
doi: 10.1016/S0377-2217(97)00441-4. |
[13] |
X. J. He, J. G. Kim and C. H. Jack, The cost of lead-time variability: The case of the exponential distribution,, International Journal of Production Economics, 97 (2005), 113.
doi: 10.1016/j.ijpe.2004.05.007. |
[14] |
R. M. Hill, The optimal production and shipment policy for the single-vendor single-buyer integrated production-inventory problem,, International Journal of Production Research, 37 (1999), 2463.
doi: 10.1080/002075499190617. |
[15] |
M. A. Hoque and S. K. Goyal, An optimal policy for a single-vendor single-buyer integrated production-inventory system with capacity constraint of the transportation equipment,, International Journal of Production Economics, 65 (2000), 305.
doi: 10.1016/S0925-5273(99)00082-1. |
[16] |
P. N. Joglekar, Comments on: A quantity discount pricing model to increase vendor profits,, Management Science, 34 (1988), 1391.
doi: 10.1287/mnsc.34.11.1391. |
[17] |
C. J. Liao and C. H. Shyu, An analytical determination of lead time with normal demand,, International Journal of Operations and Production Management, 11 (1991), 72.
doi: 10.1108/EUM0000000001287. |
[18] |
M. J. Liberatore, Planning Horizons for a stochastic lead-time inventory model,, Operations Research, 26 (1977), 927.
|
[19] |
A. K. Maiti, M. K. Maiti and M. Maiti, Inventory model with stochastic lead-time and price dependent demand incorporating advance payment,, Applied Mathematical Modeling, 33 (2009), 2433.
doi: 10.1016/j.apm.2008.07.024. |
[20] |
B. F. Moghadam and S. M. Seyedhosseini, A particle swarm approach to solve vehicle routing problem with uncertain demand: A drug distribution case study,, International Journal of Industrial Engineering Computations, 1 (2010), 55. Google Scholar |
[21] |
L.-Y. Ouyang and H.-C. Chang, Lot size reorder point inventory model with controllable lead time and set-up cost,, International Journal of Systems Science, 33 (2002), 635.
doi: 10.1080/00207720210136685. |
[22] |
M. J. Paknejad, F. Nasri and J. F. Affisco, Lead-time variability reduction in stochastic inventory models,, European Journal of Operational Research, 62 (1992), 311.
doi: 10.1016/0377-2217(92)90121-O. |
[23] |
M. J. Paknejad, F. Nasri and J. F. Affisco, Quality improvement in an inventory model with finite-range stochastic lead times,, Journal of Applied Mathematics and Decision Sciences, 3 (2005), 177.
|
[24] |
J. C. Pan and J. S. Yang, A study of an integrated inventory with controllable lead time,, International Journal of Production Research, 40 (2002), 1263.
doi: 10.1080/00207540110105680. |
[25] |
S. Sadjadi, M. Jafari and T. Amini, A new mathematical modeling and a genetic algorithm search for milk run problem (an auto industry supply chain case study),, International Journal of Advanced Manufacturing Technology, 44 (2009), 194.
doi: 10.1007/s00170-008-1648-5. |
[26] |
G. P. Sphicas and F. Nasri, An inventory model with finite-range stochastic lead times,, Naval Research Logistics, 31 (1984), 609.
doi: 10.1002/nav.3800310410. |
[27] |
J. C. Yu, H. M. Wee and K. J. Wang, Supply chain partnership for three-echelon deteriorating inventory model,, Journal of Industrial and Management Optimization, 4 (2008), 827.
|
show all references
References:
[1] |
M. Ben-Daya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time,, International Journal of Production Economics, 92 (2004), 75.
doi: 10.1016/j.ijpe.2003.09.012. |
[2] |
H. Chang, L. Ouyang, K. Wu and C. Ho, Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction,, European Journal of Operational Research, 170 (2006), 481.
doi: 10.1016/j.ejor.2004.06.029. |
[3] |
J. M. Chen and T. Chen, The multi-item replenishment problem in a two-echelon supply chain: the effect of centralization versus decentralization,, Computers and Operations Research, 32 (2005), 3191.
doi: 10.1016/j.cor.2004.05.007. |
[4] |
S. Chopra, G. Reinhardt and M. Dada, The effect of lead time uncertainty on safety stocks,, Decision Sciences, 35 (2004), 1.
doi: 10.1111/j.1540-5414.2004.02332.x. |
[5] |
C. F. Daganzo, The distance traveled to visit N points with a maximum of C stops per vehicle: An analytic model and an application,, Transportation Science, 18 (1984), 331.
doi: 10.1287/trsc.18.4.331. |
[6] |
T. Du, F. K. Wang and P. Lu, A real-time vehicle-dispatching system for consolidating milk runs,, Transportation Research, 43 (2007), 565.
doi: 10.1016/j.tre.2006.03.001. |
[7] |
Y. Gerchak and M. Parlar, Investing in reducing lead-time randomness in continuous-review inventory models,, Engineering Costs and Production Economics, 21 (1991), 191.
doi: 10.1016/0167-188X(91)90032-W. |
[8] |
C. H. Glock, A comment: "Integrated single vendor-single buyer model with stochastic demand and variable lead time,", International Journal of Production Research, 122 (2009), 790.
doi: 10.1016/j.ijpe.2009.06.032. |
[9] |
C. H. Glock, The joint economic lot size problem: A review,, International Journal of Production Economics, 135 (2012), 671.
doi: 10.1016/j.ijpe.2011.10.026. |
[10] |
S. K. Goyal, A joint economic-lot-size model for purchaser and vendor: A comment,, Decision Sciences, 19 (1988), 236.
doi: 10.1111/j.1540-5915.1988.tb00264.x. |
[11] |
M. G. Guler and T. Bilgic, On coordinating an assembly system under random yield and random demand,, European Journal of Operational Research, 196 (2009), 342.
doi: 10.1016/j.ejor.2008.03.002. |
[12] |
M. Hariga and M. Ben-Daya, Some stochastic inventory models with deterministic variable lead time,, European Journal of Operational Research, 113 (1999), 42.
doi: 10.1016/S0377-2217(97)00441-4. |
[13] |
X. J. He, J. G. Kim and C. H. Jack, The cost of lead-time variability: The case of the exponential distribution,, International Journal of Production Economics, 97 (2005), 113.
doi: 10.1016/j.ijpe.2004.05.007. |
[14] |
R. M. Hill, The optimal production and shipment policy for the single-vendor single-buyer integrated production-inventory problem,, International Journal of Production Research, 37 (1999), 2463.
doi: 10.1080/002075499190617. |
[15] |
M. A. Hoque and S. K. Goyal, An optimal policy for a single-vendor single-buyer integrated production-inventory system with capacity constraint of the transportation equipment,, International Journal of Production Economics, 65 (2000), 305.
doi: 10.1016/S0925-5273(99)00082-1. |
[16] |
P. N. Joglekar, Comments on: A quantity discount pricing model to increase vendor profits,, Management Science, 34 (1988), 1391.
doi: 10.1287/mnsc.34.11.1391. |
[17] |
C. J. Liao and C. H. Shyu, An analytical determination of lead time with normal demand,, International Journal of Operations and Production Management, 11 (1991), 72.
doi: 10.1108/EUM0000000001287. |
[18] |
M. J. Liberatore, Planning Horizons for a stochastic lead-time inventory model,, Operations Research, 26 (1977), 927.
|
[19] |
A. K. Maiti, M. K. Maiti and M. Maiti, Inventory model with stochastic lead-time and price dependent demand incorporating advance payment,, Applied Mathematical Modeling, 33 (2009), 2433.
doi: 10.1016/j.apm.2008.07.024. |
[20] |
B. F. Moghadam and S. M. Seyedhosseini, A particle swarm approach to solve vehicle routing problem with uncertain demand: A drug distribution case study,, International Journal of Industrial Engineering Computations, 1 (2010), 55. Google Scholar |
[21] |
L.-Y. Ouyang and H.-C. Chang, Lot size reorder point inventory model with controllable lead time and set-up cost,, International Journal of Systems Science, 33 (2002), 635.
doi: 10.1080/00207720210136685. |
[22] |
M. J. Paknejad, F. Nasri and J. F. Affisco, Lead-time variability reduction in stochastic inventory models,, European Journal of Operational Research, 62 (1992), 311.
doi: 10.1016/0377-2217(92)90121-O. |
[23] |
M. J. Paknejad, F. Nasri and J. F. Affisco, Quality improvement in an inventory model with finite-range stochastic lead times,, Journal of Applied Mathematics and Decision Sciences, 3 (2005), 177.
|
[24] |
J. C. Pan and J. S. Yang, A study of an integrated inventory with controllable lead time,, International Journal of Production Research, 40 (2002), 1263.
doi: 10.1080/00207540110105680. |
[25] |
S. Sadjadi, M. Jafari and T. Amini, A new mathematical modeling and a genetic algorithm search for milk run problem (an auto industry supply chain case study),, International Journal of Advanced Manufacturing Technology, 44 (2009), 194.
doi: 10.1007/s00170-008-1648-5. |
[26] |
G. P. Sphicas and F. Nasri, An inventory model with finite-range stochastic lead times,, Naval Research Logistics, 31 (1984), 609.
doi: 10.1002/nav.3800310410. |
[27] |
J. C. Yu, H. M. Wee and K. J. Wang, Supply chain partnership for three-echelon deteriorating inventory model,, Journal of Industrial and Management Optimization, 4 (2008), 827.
|
[1] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[2] |
Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020165 |
[3] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[4] |
Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 |
[5] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[6] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[7] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
[8] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[9] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
[10] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[11] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[12] |
Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021014 |
[13] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[14] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[15] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[16] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[17] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[18] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[19] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[20] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]