-
Previous Article
Solving Partitioning-Hub Location-Routing Problem using DCA
- JIMO Home
- This Issue
-
Next Article
A penalty method for generalized Nash equilibrium problems
Global and global linear convergence of smoothing algorithm for the Cartesian $P_*(\kappa)$-SCLCP
1. | Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P.R. |
2. | Department of Mathematics, Xidian University, XiAn 710071, China |
References:
show all references
References:
[1] |
Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial and Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53 |
[2] |
Yi Zhang, Liwei Zhang, Jia Wu. On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints. Journal of Industrial and Management Optimization, 2018, 14 (3) : 981-1005. doi: 10.3934/jimo.2017086 |
[3] |
Xiao-Hong Liu, Wei-Zhe Gu. Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems over symmetric cones. Journal of Industrial and Management Optimization, 2010, 6 (2) : 363-380. doi: 10.3934/jimo.2010.6.363 |
[4] |
Xin-He Miao, Jein-Shan Chen. Error bounds for symmetric cone complementarity problems. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 627-641. doi: 10.3934/naco.2013.3.627 |
[5] |
Zheng-Hai Huang, Jie Sun. A smoothing Newton algorithm for mathematical programs with complementarity constraints. Journal of Industrial and Management Optimization, 2005, 1 (2) : 153-170. doi: 10.3934/jimo.2005.1.153 |
[6] |
Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141 |
[7] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[8] |
Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259 |
[9] |
Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529 |
[10] |
Jie Zhang, Yue Wu, Liwei Zhang. A class of smoothing SAA methods for a stochastic linear complementarity problem. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 145-156. doi: 10.3934/naco.2012.2.145 |
[11] |
A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31 |
[12] |
Yanqin Bai, Lipu Zhang. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. Journal of Industrial and Management Optimization, 2011, 7 (4) : 891-906. doi: 10.3934/jimo.2011.7.891 |
[13] |
Yu-Lin Chang, Chin-Yu Yang. Some useful inequalities via trace function method in Euclidean Jordan algebras. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 39-48. doi: 10.3934/naco.2014.4.39 |
[14] |
Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial and Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153 |
[15] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[16] |
Fan Yuan, Dachuan Xu, Donglei Du, Min Li. An exact algorithm for stable instances of the $ k $-means problem with penalties in fixed-dimensional Euclidean space. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021122 |
[17] |
Weihua Liu, Andrew Klapper. AFSRs synthesis with the extended Euclidean rational approximation algorithm. Advances in Mathematics of Communications, 2017, 11 (1) : 139-150. doi: 10.3934/amc.2017008 |
[18] |
ShiChun Lv, Shou-Qiang Du. A new smoothing spectral conjugate gradient method for solving tensor complementarity problems. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021150 |
[19] |
Xiaoqin Jiang, Ying Zhang. A smoothing-type algorithm for absolute value equations. Journal of Industrial and Management Optimization, 2013, 9 (4) : 789-798. doi: 10.3934/jimo.2013.9.789 |
[20] |
Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1873-1884. doi: 10.3934/jimo.2019033 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]