Citation: |
[1] |
L. T. H. An, An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints, Math. Program., 87 (2000), 401-426.doi: 10.1007/s101070050003. |
[2] |
A. Charnes, W. W. Cooper and H. Symonds, Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil, Manag. Sci., 4 (1958), 235-263. |
[3] |
Y. Gao, "Structured Low Rank Matrix Optimization Problems: A Penalty Approach," Ph.D thesis, National University of Singapore, 2010. |
[4] |
Y. Gao and D. Sun, Calibrating least squares semidefinite programming with equality and inequality constraints, SIAM J. Matrix Anal. Appl., 31 (2009), 1432-1457.doi: 10.1137/080727075. |
[5] |
M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21, April, 2011. Available from: http://cvxr.com/cvx. |
[6] |
L. J. Hong, Y. Yang and L. Zhang, Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach, Oper. Res., 59 (2011), 617-630.doi: 10.1287/opre.1100.0910. |
[7] |
R. Horst and N. V. Thoni, DC programming: Overview, J. Optim. Theory Appl., 103 (1999), 1-43. |
[8] |
D. Klatte and W. Li, Asymptotic constraint qualifications and global error bounds for convex inequalities, Math. Program., 84 (1999), 137-160. |
[9] |
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.doi: 10.1137/050622328. |
[10] |
R. T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970. |
[11] |
R. T. Rockafellar and R. J. B. Wets, "Variational Analysis," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317, Springer, New York, 1998. |
[12] |
A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory," MPS/SIAM Series on Optimization, 9, SIAM, Philadelphia, PA, 2009. |