July  2012, 8(3): 733-747. doi: 10.3934/jimo.2012.8.733

A sequential convex program method to DC program with joint chance constraints

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China, China

2. 

School of Sciences, Dalian Ocean University, Dalian 116023, China

3. 

School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, China

Received  September 2011 Revised  March 2012 Published  June 2012

In this paper, we consider a DC (difference of convex) programming problem with joint chance constraints (JCCDCP). We propose a DC function to approximate the constrained function and a corresponding DC program ($\textrm{P}_{\varepsilon}$) to approximate the JCCDCP. Under some mild assumptions, we show that the solution of Problem ($\textrm{P}_{\varepsilon}$) converges to the solution of JCCDCP when $\varepsilon\downarrow 0$. A sequential convex program method is constructed to solve the Problem ($\textrm{P}_{\varepsilon}$). At each iteration a convex program is solved based on the Monte Carlo method, and the generated optimal sequence is proved to converge to the stationary point of Problem ($\textrm{P}_{\varepsilon}$).
Citation: Xiantao Xiao, Jian Gu, Liwei Zhang, Shaowu Zhang. A sequential convex program method to DC program with joint chance constraints. Journal of Industrial & Management Optimization, 2012, 8 (3) : 733-747. doi: 10.3934/jimo.2012.8.733
References:
[1]

L. T. H. An, An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints,, Math. Program., 87 (2000), 401.  doi: 10.1007/s101070050003.  Google Scholar

[2]

A. Charnes, W. W. Cooper and H. Symonds, Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil,, Manag. Sci., 4 (1958), 235.   Google Scholar

[3]

Y. Gao, "Structured Low Rank Matrix Optimization Problems: A Penalty Approach,", Ph.D thesis, (2010).   Google Scholar

[4]

Y. Gao and D. Sun, Calibrating least squares semidefinite programming with equality and inequality constraints,, SIAM J. Matrix Anal. Appl., 31 (2009), 1432.  doi: 10.1137/080727075.  Google Scholar

[5]

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21,, April, (2011).   Google Scholar

[6]

L. J. Hong, Y. Yang and L. Zhang, Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach,, Oper. Res., 59 (2011), 617.  doi: 10.1287/opre.1100.0910.  Google Scholar

[7]

R. Horst and N. V. Thoni, DC programming: Overview,, J. Optim. Theory Appl., 103 (1999), 1.   Google Scholar

[8]

D. Klatte and W. Li, Asymptotic constraint qualifications and global error bounds for convex inequalities,, Math. Program., 84 (1999), 137.   Google Scholar

[9]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM J. Optim., 17 (2006), 969.  doi: 10.1137/050622328.  Google Scholar

[10]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[11]

R. T. Rockafellar and R. J. B. Wets, "Variational Analysis,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317 (1998).   Google Scholar

[12]

A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory,", MPS/SIAM Series on Optimization, 9 (2009).   Google Scholar

show all references

References:
[1]

L. T. H. An, An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints,, Math. Program., 87 (2000), 401.  doi: 10.1007/s101070050003.  Google Scholar

[2]

A. Charnes, W. W. Cooper and H. Symonds, Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil,, Manag. Sci., 4 (1958), 235.   Google Scholar

[3]

Y. Gao, "Structured Low Rank Matrix Optimization Problems: A Penalty Approach,", Ph.D thesis, (2010).   Google Scholar

[4]

Y. Gao and D. Sun, Calibrating least squares semidefinite programming with equality and inequality constraints,, SIAM J. Matrix Anal. Appl., 31 (2009), 1432.  doi: 10.1137/080727075.  Google Scholar

[5]

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21,, April, (2011).   Google Scholar

[6]

L. J. Hong, Y. Yang and L. Zhang, Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach,, Oper. Res., 59 (2011), 617.  doi: 10.1287/opre.1100.0910.  Google Scholar

[7]

R. Horst and N. V. Thoni, DC programming: Overview,, J. Optim. Theory Appl., 103 (1999), 1.   Google Scholar

[8]

D. Klatte and W. Li, Asymptotic constraint qualifications and global error bounds for convex inequalities,, Math. Program., 84 (1999), 137.   Google Scholar

[9]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM J. Optim., 17 (2006), 969.  doi: 10.1137/050622328.  Google Scholar

[10]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[11]

R. T. Rockafellar and R. J. B. Wets, "Variational Analysis,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317 (1998).   Google Scholar

[12]

A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory,", MPS/SIAM Series on Optimization, 9 (2009).   Google Scholar

[1]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[2]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[5]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[6]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[7]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[8]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[9]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[10]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

[11]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[12]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[13]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[14]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[15]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[16]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[17]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[18]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[19]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[20]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]