July  2012, 8(3): 749-764. doi: 10.3934/jimo.2012.8.749

Lagrange multiplier rules for approximate solutions in vector optimization

1. 

College of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, 611130, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Received  January 2012 Revised  March 2012 Published  June 2012

In Asplund space, Lagrange multiplier rules for approximate solutions of nonsmooth vector optimization problems are studied. The relationships between the vector and the scalar optimization problems are established. And the optimality conditions of approximate solutions for vector optimization are obtained. Moreover, the vector variational inequalities are considered by applying the partial results given in this paper.
Citation: Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749
References:
[1]

B. El Abdouni and L. Thibault, Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces,, Optimization, 26 (1992), 277.  doi: 10.1080/02331939208843857.  Google Scholar

[2]

T. Amahroq and A. Taa, On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems,, Optimization, 41 (1997), 159.  doi: 10.1080/02331939708844332.  Google Scholar

[3]

J. M. Borwein, J. S. Treiman and Q. J. Zhu, Necessary conditions for constrained optimization problems with semicontinuous and continuous data,, Trans. Amer. Math. Soc., 350 (1998), 2409.  doi: 10.1090/S0002-9947-98-01983-7.  Google Scholar

[4]

J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications,, Nonlinear Anal., 38 (1999), 687.  doi: 10.1016/S0362-546X(98)00142-4.  Google Scholar

[5]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\varepsilon$-Pareto solutions in vector optimization with non-solid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[6]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Funct. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[7]

J. Dutta, Necessary optimality conditions and saddle points for approximate optimization in Banach spaces,, Top, 13 (2005), 127.  doi: 10.1007/BF02578991.  Google Scholar

[8]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces,, Math. Meth. Oper. Res., 64 (2006), 521.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[9]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 17 (2003).   Google Scholar

[11]

S. Helbig, On a new concept for $\varepsilon$-efficiency,, talk at, (1992).   Google Scholar

[12]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.   Google Scholar

[13]

J. Jahn, "Mathematical Vector Optimization in Partially Order Linear Spaces,", Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], 31 (1986).   Google Scholar

[14]

S. S. Kutateladze, Convex $\varepsilon$-programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[15]

P. Loridan, $\varepsilon$-solutions in vector minimization problems,, J. Optim. Theory Appl., 43 (1984), 265.  doi: 10.1007/BF00936165.  Google Scholar

[16]

P. Loridan, Necessary conditions for $\varepsilon$-optimality,, Math. Programming Study, 19 (1982), 140.  doi: 10.1007/BFb0120986.  Google Scholar

[17]

B. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces,, Trans. Amer. Math. Soc., 348 (1996), 1235.   Google Scholar

[18]

B. S. Mordukhovich, Necessary conditions in nonsmooth minimization via lower and upper subgradients,, Set-Valued Anal., 12 (2004), 163.  doi: 10.1023/B:SVAN.0000023398.73288.82.  Google Scholar

[19]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[20]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. II: Applications,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[21]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[22]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[23]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[24]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

[25]

X. Y. Zheng and K. F. Ng, The Lagrange multiplier rule for multifunctions in Banach spaces,, SIAM J. on Optim., 17 (2006), 1154.  doi: 10.1137/060651860.  Google Scholar

[26]

Q. J. Zhu, Necessary conditions for constrained optimization problems in smooth Banach spaces and applications,, SIAM J. Optim., 12 (2002), 1032.  doi: 10.1137/S105262340138339.  Google Scholar

show all references

References:
[1]

B. El Abdouni and L. Thibault, Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces,, Optimization, 26 (1992), 277.  doi: 10.1080/02331939208843857.  Google Scholar

[2]

T. Amahroq and A. Taa, On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems,, Optimization, 41 (1997), 159.  doi: 10.1080/02331939708844332.  Google Scholar

[3]

J. M. Borwein, J. S. Treiman and Q. J. Zhu, Necessary conditions for constrained optimization problems with semicontinuous and continuous data,, Trans. Amer. Math. Soc., 350 (1998), 2409.  doi: 10.1090/S0002-9947-98-01983-7.  Google Scholar

[4]

J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications,, Nonlinear Anal., 38 (1999), 687.  doi: 10.1016/S0362-546X(98)00142-4.  Google Scholar

[5]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\varepsilon$-Pareto solutions in vector optimization with non-solid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[6]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Funct. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[7]

J. Dutta, Necessary optimality conditions and saddle points for approximate optimization in Banach spaces,, Top, 13 (2005), 127.  doi: 10.1007/BF02578991.  Google Scholar

[8]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces,, Math. Meth. Oper. Res., 64 (2006), 521.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[9]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 17 (2003).   Google Scholar

[11]

S. Helbig, On a new concept for $\varepsilon$-efficiency,, talk at, (1992).   Google Scholar

[12]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.   Google Scholar

[13]

J. Jahn, "Mathematical Vector Optimization in Partially Order Linear Spaces,", Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], 31 (1986).   Google Scholar

[14]

S. S. Kutateladze, Convex $\varepsilon$-programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[15]

P. Loridan, $\varepsilon$-solutions in vector minimization problems,, J. Optim. Theory Appl., 43 (1984), 265.  doi: 10.1007/BF00936165.  Google Scholar

[16]

P. Loridan, Necessary conditions for $\varepsilon$-optimality,, Math. Programming Study, 19 (1982), 140.  doi: 10.1007/BFb0120986.  Google Scholar

[17]

B. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces,, Trans. Amer. Math. Soc., 348 (1996), 1235.   Google Scholar

[18]

B. S. Mordukhovich, Necessary conditions in nonsmooth minimization via lower and upper subgradients,, Set-Valued Anal., 12 (2004), 163.  doi: 10.1023/B:SVAN.0000023398.73288.82.  Google Scholar

[19]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[20]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. II: Applications,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[21]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[22]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[23]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[24]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

[25]

X. Y. Zheng and K. F. Ng, The Lagrange multiplier rule for multifunctions in Banach spaces,, SIAM J. on Optim., 17 (2006), 1154.  doi: 10.1137/060651860.  Google Scholar

[26]

Q. J. Zhu, Necessary conditions for constrained optimization problems in smooth Banach spaces and applications,, SIAM J. Optim., 12 (2002), 1032.  doi: 10.1137/S105262340138339.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[3]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[4]

Yasemin Şengül. Viscoelasticity with limiting strain. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330

[5]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[8]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[9]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[15]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[16]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[17]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]