July  2012, 8(3): 749-764. doi: 10.3934/jimo.2012.8.749

Lagrange multiplier rules for approximate solutions in vector optimization

1. 

College of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, 611130, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Received  January 2012 Revised  March 2012 Published  June 2012

In Asplund space, Lagrange multiplier rules for approximate solutions of nonsmooth vector optimization problems are studied. The relationships between the vector and the scalar optimization problems are established. And the optimality conditions of approximate solutions for vector optimization are obtained. Moreover, the vector variational inequalities are considered by applying the partial results given in this paper.
Citation: Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749
References:
[1]

B. El Abdouni and L. Thibault, Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces,, Optimization, 26 (1992), 277.  doi: 10.1080/02331939208843857.  Google Scholar

[2]

T. Amahroq and A. Taa, On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems,, Optimization, 41 (1997), 159.  doi: 10.1080/02331939708844332.  Google Scholar

[3]

J. M. Borwein, J. S. Treiman and Q. J. Zhu, Necessary conditions for constrained optimization problems with semicontinuous and continuous data,, Trans. Amer. Math. Soc., 350 (1998), 2409.  doi: 10.1090/S0002-9947-98-01983-7.  Google Scholar

[4]

J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications,, Nonlinear Anal., 38 (1999), 687.  doi: 10.1016/S0362-546X(98)00142-4.  Google Scholar

[5]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\varepsilon$-Pareto solutions in vector optimization with non-solid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[6]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Funct. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[7]

J. Dutta, Necessary optimality conditions and saddle points for approximate optimization in Banach spaces,, Top, 13 (2005), 127.  doi: 10.1007/BF02578991.  Google Scholar

[8]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces,, Math. Meth. Oper. Res., 64 (2006), 521.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[9]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 17 (2003).   Google Scholar

[11]

S. Helbig, On a new concept for $\varepsilon$-efficiency,, talk at, (1992).   Google Scholar

[12]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.   Google Scholar

[13]

J. Jahn, "Mathematical Vector Optimization in Partially Order Linear Spaces,", Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], 31 (1986).   Google Scholar

[14]

S. S. Kutateladze, Convex $\varepsilon$-programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[15]

P. Loridan, $\varepsilon$-solutions in vector minimization problems,, J. Optim. Theory Appl., 43 (1984), 265.  doi: 10.1007/BF00936165.  Google Scholar

[16]

P. Loridan, Necessary conditions for $\varepsilon$-optimality,, Math. Programming Study, 19 (1982), 140.  doi: 10.1007/BFb0120986.  Google Scholar

[17]

B. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces,, Trans. Amer. Math. Soc., 348 (1996), 1235.   Google Scholar

[18]

B. S. Mordukhovich, Necessary conditions in nonsmooth minimization via lower and upper subgradients,, Set-Valued Anal., 12 (2004), 163.  doi: 10.1023/B:SVAN.0000023398.73288.82.  Google Scholar

[19]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[20]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. II: Applications,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[21]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[22]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[23]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[24]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

[25]

X. Y. Zheng and K. F. Ng, The Lagrange multiplier rule for multifunctions in Banach spaces,, SIAM J. on Optim., 17 (2006), 1154.  doi: 10.1137/060651860.  Google Scholar

[26]

Q. J. Zhu, Necessary conditions for constrained optimization problems in smooth Banach spaces and applications,, SIAM J. Optim., 12 (2002), 1032.  doi: 10.1137/S105262340138339.  Google Scholar

show all references

References:
[1]

B. El Abdouni and L. Thibault, Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces,, Optimization, 26 (1992), 277.  doi: 10.1080/02331939208843857.  Google Scholar

[2]

T. Amahroq and A. Taa, On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems,, Optimization, 41 (1997), 159.  doi: 10.1080/02331939708844332.  Google Scholar

[3]

J. M. Borwein, J. S. Treiman and Q. J. Zhu, Necessary conditions for constrained optimization problems with semicontinuous and continuous data,, Trans. Amer. Math. Soc., 350 (1998), 2409.  doi: 10.1090/S0002-9947-98-01983-7.  Google Scholar

[4]

J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications,, Nonlinear Anal., 38 (1999), 687.  doi: 10.1016/S0362-546X(98)00142-4.  Google Scholar

[5]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\varepsilon$-Pareto solutions in vector optimization with non-solid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[6]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Funct. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[7]

J. Dutta, Necessary optimality conditions and saddle points for approximate optimization in Banach spaces,, Top, 13 (2005), 127.  doi: 10.1007/BF02578991.  Google Scholar

[8]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces,, Math. Meth. Oper. Res., 64 (2006), 521.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[9]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 17 (2003).   Google Scholar

[11]

S. Helbig, On a new concept for $\varepsilon$-efficiency,, talk at, (1992).   Google Scholar

[12]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.   Google Scholar

[13]

J. Jahn, "Mathematical Vector Optimization in Partially Order Linear Spaces,", Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], 31 (1986).   Google Scholar

[14]

S. S. Kutateladze, Convex $\varepsilon$-programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[15]

P. Loridan, $\varepsilon$-solutions in vector minimization problems,, J. Optim. Theory Appl., 43 (1984), 265.  doi: 10.1007/BF00936165.  Google Scholar

[16]

P. Loridan, Necessary conditions for $\varepsilon$-optimality,, Math. Programming Study, 19 (1982), 140.  doi: 10.1007/BFb0120986.  Google Scholar

[17]

B. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces,, Trans. Amer. Math. Soc., 348 (1996), 1235.   Google Scholar

[18]

B. S. Mordukhovich, Necessary conditions in nonsmooth minimization via lower and upper subgradients,, Set-Valued Anal., 12 (2004), 163.  doi: 10.1023/B:SVAN.0000023398.73288.82.  Google Scholar

[19]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[20]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. II: Applications,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[21]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[22]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[23]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[24]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

[25]

X. Y. Zheng and K. F. Ng, The Lagrange multiplier rule for multifunctions in Banach spaces,, SIAM J. on Optim., 17 (2006), 1154.  doi: 10.1137/060651860.  Google Scholar

[26]

Q. J. Zhu, Necessary conditions for constrained optimization problems in smooth Banach spaces and applications,, SIAM J. Optim., 12 (2002), 1032.  doi: 10.1137/S105262340138339.  Google Scholar

[1]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[2]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[3]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019089

[4]

Karla L. Cortez, Javier F. Rosenblueth. Normality and uniqueness of Lagrange multipliers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3169-3188. doi: 10.3934/dcds.2018138

[5]

Adela Capătă. Optimality conditions for vector equilibrium problems and their applications. Journal of Industrial & Management Optimization, 2013, 9 (3) : 659-669. doi: 10.3934/jimo.2013.9.659

[6]

Qiu-Sheng Qiu. Optimality conditions for vector equilibrium problems with constraints. Journal of Industrial & Management Optimization, 2009, 5 (4) : 783-790. doi: 10.3934/jimo.2009.5.783

[7]

Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial & Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563

[8]

Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018174

[9]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[10]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[11]

Savin Treanţă. Characterization of efficient solutions for a class of PDE-constrained vector control problems. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019035

[12]

Yu Han, Nan-Jing Huang. Some characterizations of the approximate solutions to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1135-1151. doi: 10.3934/jimo.2016.12.1135

[13]

Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881

[14]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[15]

Shengji Li, Xiaole Guo. Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications. Journal of Industrial & Management Optimization, 2012, 8 (2) : 411-427. doi: 10.3934/jimo.2012.8.411

[16]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

[17]

Giovanni P. Crespi, Ivan Ginchev, Matteo Rocca. Two approaches toward constrained vector optimization and identity of the solutions. Journal of Industrial & Management Optimization, 2005, 1 (4) : 549-563. doi: 10.3934/jimo.2005.1.549

[18]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[19]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[20]

B. Bonnard, J.-B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145-154. doi: 10.3934/proc.2007.2007.145

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]