
Previous Article
Lagrange multiplier rules for approximate solutions in vector optimization
 JIMO Home
 This Issue
 Next Article
Identification for systems governed by nonlinear interval differential equations
1.  Dep. of Elec. Eng., Higher Technological Institute, Ramadan 10th City 
References:
show all references
References:
[1] 
Alexandra Skripchenko. Symmetric interval identification systems of order three. Discrete & Continuous Dynamical Systems  A, 2012, 32 (2) : 643656. doi: 10.3934/dcds.2012.32.643 
[2] 
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems  A, 2017, 37 (7) : 35453566. doi: 10.3934/dcds.2017152 
[3] 
Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373410. doi: 10.3934/jgm.2018014 
[4] 
Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883891. doi: 10.3934/proc.2007.2007.883 
[5] 
JinMun Jeong, SeongHo Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 7791. doi: 10.3934/eect.2017005 
[6] 
Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete & Continuous Dynamical Systems  A, 2016, 36 (6) : 34353443. doi: 10.3934/dcds.2016.36.3435 
[7] 
Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems  A, 2010, 27 (1) : 5373. doi: 10.3934/dcds.2010.27.53 
[8] 
Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems & Imaging, 2019, 13 (3) : 513543. doi: 10.3934/ipi.2019025 
[9] 
Jing Cui, ShuMing Sun. Nonlinear Schrödinger equations on a finite interval with point dissipation. Mathematical Control & Related Fields, 2019, 9 (2) : 351384. doi: 10.3934/mcrf.2019017 
[10] 
Masoumeh Gharaei, Ale Jan Homburg. Random interval diffeomorphisms. Discrete & Continuous Dynamical Systems  S, 2017, 10 (2) : 241272. doi: 10.3934/dcdss.2017012 
[11] 
Mahdi Khajeh Salehani. Identification of generic stable dynamical systems taking a nonlinear differential approach. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 45414555. doi: 10.3934/dcdsb.2018175 
[12] 
Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428435. doi: 10.3934/proc.2015.0428 
[13] 
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems  A, 2003, 9 (3) : 617632. doi: 10.3934/dcds.2003.9.617 
[14] 
Daniel Bernazzani. Most interval exchanges have no roots. Journal of Modern Dynamics, 2017, 11: 249262. doi: 10.3934/jmd.2017011 
[15] 
Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219248. doi: 10.3934/jmd.2017010 
[16] 
Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 43234343. doi: 10.3934/dcds.2015.35.4323 
[17] 
Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507535. doi: 10.3934/mcrf.2017019 
[18] 
Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 745759. doi: 10.3934/dcdss.2011.4.745 
[19] 
Artur M. C. Brito da Cruz, Natália Martins, Delfim F. M. Torres. Hahn's symmetric quantum variational calculus. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 7794. doi: 10.3934/naco.2013.3.77 
[20] 
Eduardo Martínez. Higherorder variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81108. doi: 10.3934/jgm.2015.7.81 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]