July  2012, 8(3): 765-780. doi: 10.3934/jimo.2012.8.765

Identification for systems governed by nonlinear interval differential equations

1. 

Dep. of Elec. Eng., Higher Technological Institute, Ramadan 10th City

Received  January 2012 Revised  February 2012 Published  June 2012

In this paper we consider the identification problem for a class of systems governed by nonlinear time varying interval differential equations having unknown (interval) parameters. Using the fact that system output posses lower and upper bounds, we have developed two sets of ordinary differential equations that represent the behaviour of lower and upper bounds. Based on these differential equations, the interval identification problem is converted into an equivalent identification problem in which the unknown parameters are real valued functions. Using variational arguments, we have developed the necessary conditions of optimality for the equivalent problem on the basis of which the unknown lower and upper parameters (and hence the interval parameters) can be determined. Finally, we present some numerical simulations to illustrate the effectivness of the proposed technique.
Citation: Tayel Dabbous. Identification for systems governed by nonlinear interval differential equations. Journal of Industrial & Management Optimization, 2012, 8 (3) : 765-780. doi: 10.3934/jimo.2012.8.765
References:
[1]

N. U. Ahmed, "Elements of Finite-Dimensional and Control Theory,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 37 (1988).   Google Scholar

[2]

B. Bedregal, R. Trinade and A. Doria-Neto, Basic concepts of interval digital signal processing,, World Academy of Eng. and Tech., 40 (2008), 66.   Google Scholar

[3]

J. Chen, G. Wang and L. Sheih, Interval Kalman filtering,, IEEE Trans. on Aerospace and Electr. Systems, (1997).   Google Scholar

[4]

T. E. Dabbous, Adaptive control of nonlinear systems using fuzzy systems,, Industrial and Management Optimization, 6 (2010), 861.   Google Scholar

[5]

M. Kieffor, O. Didrit, L. Jaulin and É. Walter, "Applied Interval Analysis. With Examples in Parameter and State Estimation Robust Control and Robotics,", With 1 CD-ROM (UNIX, (2001).   Google Scholar

[6]

R. Moore, "Methods and Applications of Interval Analysis,", SIAM Studies in Applied Mathematics, 2 (1979).   Google Scholar

[7]

E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. II. The interval matrix exponential function,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1230.   Google Scholar

[8]

E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. III. Initial value problem,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1243.   Google Scholar

[9]

E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. I. Fundamental results,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1129.   Google Scholar

[10]

A. Rapaport, J. L. Gouze and M. Hadj-Sadok, Interval observers for uncertain biological systems,, Ecological Modeling, 133 (2000), 45.   Google Scholar

[11]

G. Schröder, Differentiation of interval functions,, Proceedings of AMS, 36 (1972), 485.   Google Scholar

[12]

K. Shahiari and S. Tarasiewicz, Linear time varying systems: Model parameters characterization using interval analysis,, Int. Journal of Math. and Comp. in Sim., 1 (2008), 54.   Google Scholar

[13]

Ye. Smagina and I. Brewer, Using interval arethmetic for robust state feedback design,, Systems and Control Letter, 46 (2002), 187.   Google Scholar

[14]

A. Stancu, V. Puig and J. Quevedo, Observers for interval systems using set and trajecrory-based approaches,, 44th IEEE Conf. on Decision and Control, 1 (2005), 6567.   Google Scholar

[15]

A. Yeşildirek and F. L. Lewis, Feedback linearization using neural networks,, Automatica J. IFAC, 31 (1995), 1659.   Google Scholar

show all references

References:
[1]

N. U. Ahmed, "Elements of Finite-Dimensional and Control Theory,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 37 (1988).   Google Scholar

[2]

B. Bedregal, R. Trinade and A. Doria-Neto, Basic concepts of interval digital signal processing,, World Academy of Eng. and Tech., 40 (2008), 66.   Google Scholar

[3]

J. Chen, G. Wang and L. Sheih, Interval Kalman filtering,, IEEE Trans. on Aerospace and Electr. Systems, (1997).   Google Scholar

[4]

T. E. Dabbous, Adaptive control of nonlinear systems using fuzzy systems,, Industrial and Management Optimization, 6 (2010), 861.   Google Scholar

[5]

M. Kieffor, O. Didrit, L. Jaulin and É. Walter, "Applied Interval Analysis. With Examples in Parameter and State Estimation Robust Control and Robotics,", With 1 CD-ROM (UNIX, (2001).   Google Scholar

[6]

R. Moore, "Methods and Applications of Interval Analysis,", SIAM Studies in Applied Mathematics, 2 (1979).   Google Scholar

[7]

E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. II. The interval matrix exponential function,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1230.   Google Scholar

[8]

E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. III. Initial value problem,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1243.   Google Scholar

[9]

E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. I. Fundamental results,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1129.   Google Scholar

[10]

A. Rapaport, J. L. Gouze and M. Hadj-Sadok, Interval observers for uncertain biological systems,, Ecological Modeling, 133 (2000), 45.   Google Scholar

[11]

G. Schröder, Differentiation of interval functions,, Proceedings of AMS, 36 (1972), 485.   Google Scholar

[12]

K. Shahiari and S. Tarasiewicz, Linear time varying systems: Model parameters characterization using interval analysis,, Int. Journal of Math. and Comp. in Sim., 1 (2008), 54.   Google Scholar

[13]

Ye. Smagina and I. Brewer, Using interval arethmetic for robust state feedback design,, Systems and Control Letter, 46 (2002), 187.   Google Scholar

[14]

A. Stancu, V. Puig and J. Quevedo, Observers for interval systems using set and trajecrory-based approaches,, 44th IEEE Conf. on Decision and Control, 1 (2005), 6567.   Google Scholar

[15]

A. Yeşildirek and F. L. Lewis, Feedback linearization using neural networks,, Automatica J. IFAC, 31 (1995), 1659.   Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]