October  2012, 8(4): 807-819. doi: 10.3934/jimo.2012.8.807

Effect of application-layer rate-control mechanism on video quality for streaming services

1. 

Graduate school of Informatics, Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

Received  September 2011 Revised  July 2012 Published  September 2012

In video streaming, feedback-based rate control is utilized for guaranteeing video quality on an end-to-end basis. This paper considers the effect of feedback-based rate controls on video quality from queueing theoretical point of view. We focus on a video streaming mechanism with a feedback-based rate control where a video server regulates the packet-sending rate according to the number of data blocks stored in a client node. The client node has two buffers: a synchronization buffer and a receiver buffer. Packets arriving to the client node are stored in the synchronization buffer first, and a video-data block is retrieved from a fixed number of packets in the synchronization buffer and forwarded to the receiver buffer. We model the client node as a discrete-time two-queue concatenated system with state-dependent packet arrivals, deriving the starvation and overflow probabilities. Numerical examples show the effectiveness of the feedback-based rate controls for improving both these probabilities. In particular, the rate control which is not sensitive to the number of data blocks in the receiver buffer makes these probabilities significantly small.
Citation: Marino Mitsumura, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of application-layer rate-control mechanism on video quality for streaming services. Journal of Industrial & Management Optimization, 2012, 8 (4) : 807-819. doi: 10.3934/jimo.2012.8.807
References:
[1]

P. de Cuetos and K. W. Ross, Unified framework for optimal video streaming,, IEEE INFOCOM'04, 3 (2004), 1479.   Google Scholar

[2]

K. A. Hua, M. A. Tantaoui and W. Tavanapong, Video delivery technologies for large-scale deployment of multimedia applications,, Proc. IEEE, 92 (2004), 1439.  doi: 10.1109/JPROC.2004.832954.  Google Scholar

[3]

C. Huang and L. Xu, SRC: Stable rate control for streaming media,, IEEE GLOBECOM'03, 7 (2003), 4016.   Google Scholar

[4]

D. Jurca, J. Chakareski, J. P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Commun. Mag., 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[5]

H. Kanakia, P. P. Mishra and A. R. Reibman, An adaptive congestion control scheme for real time packet video transport,, IEEE/ACM Trans. Networking, 3 (1995), 671.   Google Scholar

[6]

L. S. Lam, J. Y. B. Lee, S. C. Liew and W. Wang, "A Transparent Rate Adaption Algorithm for Streaming Video over the Internet,", Proc. of the 18th International conference on advanced information networking and applications (AINA' 04), (2004).   Google Scholar

[7]

G. Latouche, P. A. Jacobs and D. P. Gaver, Finite Markov chain models skip-free in one direction,, Naval Research Logistics Quarterly, 31 (1984), 571.  doi: 10.1002/nav.3800310407.  Google Scholar

[8]

D. Marpe, T. Wiegand and G. J. Sullivan, The H.264/MPEG4 advanced video voding standard and its applications,, IEEE Commun. Mag., 44 (2006), 134.  doi: 10.1109/MCOM.2006.1678121.  Google Scholar

[9]

I. Moccagatta, S. Soudagar, J. Liang and H. Chen, Error-resilient coding in JPEG-2000 and MPEG-4,, IEEE J. Sel. Areas Commun., 18 (2000), 899.  doi: 10.1109/49.848245.  Google Scholar

[10]

J. D. Salehi, Z. L. Zhang, J. Kurose and D. Towsley, Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing,, IEEE/ACM Trans. Netw., 6 (1998), 397.   Google Scholar

[11]

H. Yoshida, K. Nogami and K. Satoda, Proposal and evaluation of joint rate control for stored video streaming,, Proc. IEEE 2010 International communications quality and reliability (CQR) workshop, (2010), 1.   Google Scholar

show all references

References:
[1]

P. de Cuetos and K. W. Ross, Unified framework for optimal video streaming,, IEEE INFOCOM'04, 3 (2004), 1479.   Google Scholar

[2]

K. A. Hua, M. A. Tantaoui and W. Tavanapong, Video delivery technologies for large-scale deployment of multimedia applications,, Proc. IEEE, 92 (2004), 1439.  doi: 10.1109/JPROC.2004.832954.  Google Scholar

[3]

C. Huang and L. Xu, SRC: Stable rate control for streaming media,, IEEE GLOBECOM'03, 7 (2003), 4016.   Google Scholar

[4]

D. Jurca, J. Chakareski, J. P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Commun. Mag., 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[5]

H. Kanakia, P. P. Mishra and A. R. Reibman, An adaptive congestion control scheme for real time packet video transport,, IEEE/ACM Trans. Networking, 3 (1995), 671.   Google Scholar

[6]

L. S. Lam, J. Y. B. Lee, S. C. Liew and W. Wang, "A Transparent Rate Adaption Algorithm for Streaming Video over the Internet,", Proc. of the 18th International conference on advanced information networking and applications (AINA' 04), (2004).   Google Scholar

[7]

G. Latouche, P. A. Jacobs and D. P. Gaver, Finite Markov chain models skip-free in one direction,, Naval Research Logistics Quarterly, 31 (1984), 571.  doi: 10.1002/nav.3800310407.  Google Scholar

[8]

D. Marpe, T. Wiegand and G. J. Sullivan, The H.264/MPEG4 advanced video voding standard and its applications,, IEEE Commun. Mag., 44 (2006), 134.  doi: 10.1109/MCOM.2006.1678121.  Google Scholar

[9]

I. Moccagatta, S. Soudagar, J. Liang and H. Chen, Error-resilient coding in JPEG-2000 and MPEG-4,, IEEE J. Sel. Areas Commun., 18 (2000), 899.  doi: 10.1109/49.848245.  Google Scholar

[10]

J. D. Salehi, Z. L. Zhang, J. Kurose and D. Towsley, Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing,, IEEE/ACM Trans. Netw., 6 (1998), 397.   Google Scholar

[11]

H. Yoshida, K. Nogami and K. Satoda, Proposal and evaluation of joint rate control for stored video streaming,, Proc. IEEE 2010 International communications quality and reliability (CQR) workshop, (2010), 1.   Google Scholar

[1]

Sho Nanao, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Queueing analysis of data block synchronization mechanism in peer-to-peer based video streaming system. Journal of Industrial & Management Optimization, 2011, 7 (3) : 699-716. doi: 10.3934/jimo.2011.7.699

[2]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[3]

Zhanqiang Huo, Wuyi Yue, Naishuo Tian, Shunfu Jin. Performance evaluation for the sleep mode in the IEEE 802.16e based on a queueing model with close-down time and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 511-524. doi: 10.3934/jimo.2009.5.511

[4]

Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593

[5]

Shiva Moslemi, Abolfazl Mirzazadeh. Performance evaluation of four-stage blood supply chain with feedback variables using NDEA cross-efficiency and entropy measures under IER uncertainty. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 379-401. doi: 10.3934/naco.2017024

[6]

Yuan Zhao, Wuyi Yue. Performance evaluation and optimization of cognitive radio networks with adjustable access control for multiple secondary users. Journal of Industrial & Management Optimization, 2019, 15 (1) : 1-14. doi: 10.3934/jimo.2018029

[7]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[8]

Omer Faruk Yilmaz, Mehmet Bulent Durmusoglu. A performance comparison and evaluation of metaheuristics for a batch scheduling problem in a multi-hybrid cell manufacturing system with skilled workforce assignment. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1219-1249. doi: 10.3934/jimo.2018007

[9]

Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2018196

[10]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[11]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[12]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[13]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

[14]

Sangkyu Baek, Jinsoo Park, Bong Dae Choi. Performance analysis of transmission rate control algorithm from readers to a middleware in intelligent transportation systems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 357-375. doi: 10.3934/naco.2012.2.357

[15]

Ralf Banisch, Carsten Hartmann. Addendum to "A sparse Markov chain approximation of LQ-type stochastic control problems". Mathematical Control & Related Fields, 2017, 7 (4) : 623-623. doi: 10.3934/mcrf.2017023

[16]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[17]

Shunfu Jin, Wuyi Yue, Zhanqiang Huo. Performance evaluation for connection oriented service in the next generation Internet. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 749-761. doi: 10.3934/naco.2011.1.749

[18]

Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849

[19]

Keiji Tatsumi, Masashi Akao, Ryo Kawachi, Tetsuzo Tanino. Performance evaluation of multiobjective multiclass support vector machines maximizing geometric margins. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 151-169. doi: 10.3934/naco.2011.1.151

[20]

Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: Analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]