October  2012, 8(4): 807-819. doi: 10.3934/jimo.2012.8.807

Effect of application-layer rate-control mechanism on video quality for streaming services

1. 

Graduate school of Informatics, Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

Received  September 2011 Revised  July 2012 Published  September 2012

In video streaming, feedback-based rate control is utilized for guaranteeing video quality on an end-to-end basis. This paper considers the effect of feedback-based rate controls on video quality from queueing theoretical point of view. We focus on a video streaming mechanism with a feedback-based rate control where a video server regulates the packet-sending rate according to the number of data blocks stored in a client node. The client node has two buffers: a synchronization buffer and a receiver buffer. Packets arriving to the client node are stored in the synchronization buffer first, and a video-data block is retrieved from a fixed number of packets in the synchronization buffer and forwarded to the receiver buffer. We model the client node as a discrete-time two-queue concatenated system with state-dependent packet arrivals, deriving the starvation and overflow probabilities. Numerical examples show the effectiveness of the feedback-based rate controls for improving both these probabilities. In particular, the rate control which is not sensitive to the number of data blocks in the receiver buffer makes these probabilities significantly small.
Citation: Marino Mitsumura, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of application-layer rate-control mechanism on video quality for streaming services. Journal of Industrial & Management Optimization, 2012, 8 (4) : 807-819. doi: 10.3934/jimo.2012.8.807
References:
[1]

P. de Cuetos and K. W. Ross, Unified framework for optimal video streaming,, IEEE INFOCOM'04, 3 (2004), 1479.   Google Scholar

[2]

K. A. Hua, M. A. Tantaoui and W. Tavanapong, Video delivery technologies for large-scale deployment of multimedia applications,, Proc. IEEE, 92 (2004), 1439.  doi: 10.1109/JPROC.2004.832954.  Google Scholar

[3]

C. Huang and L. Xu, SRC: Stable rate control for streaming media,, IEEE GLOBECOM'03, 7 (2003), 4016.   Google Scholar

[4]

D. Jurca, J. Chakareski, J. P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Commun. Mag., 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[5]

H. Kanakia, P. P. Mishra and A. R. Reibman, An adaptive congestion control scheme for real time packet video transport,, IEEE/ACM Trans. Networking, 3 (1995), 671.   Google Scholar

[6]

L. S. Lam, J. Y. B. Lee, S. C. Liew and W. Wang, "A Transparent Rate Adaption Algorithm for Streaming Video over the Internet,", Proc. of the 18th International conference on advanced information networking and applications (AINA' 04), (2004).   Google Scholar

[7]

G. Latouche, P. A. Jacobs and D. P. Gaver, Finite Markov chain models skip-free in one direction,, Naval Research Logistics Quarterly, 31 (1984), 571.  doi: 10.1002/nav.3800310407.  Google Scholar

[8]

D. Marpe, T. Wiegand and G. J. Sullivan, The H.264/MPEG4 advanced video voding standard and its applications,, IEEE Commun. Mag., 44 (2006), 134.  doi: 10.1109/MCOM.2006.1678121.  Google Scholar

[9]

I. Moccagatta, S. Soudagar, J. Liang and H. Chen, Error-resilient coding in JPEG-2000 and MPEG-4,, IEEE J. Sel. Areas Commun., 18 (2000), 899.  doi: 10.1109/49.848245.  Google Scholar

[10]

J. D. Salehi, Z. L. Zhang, J. Kurose and D. Towsley, Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing,, IEEE/ACM Trans. Netw., 6 (1998), 397.   Google Scholar

[11]

H. Yoshida, K. Nogami and K. Satoda, Proposal and evaluation of joint rate control for stored video streaming,, Proc. IEEE 2010 International communications quality and reliability (CQR) workshop, (2010), 1.   Google Scholar

show all references

References:
[1]

P. de Cuetos and K. W. Ross, Unified framework for optimal video streaming,, IEEE INFOCOM'04, 3 (2004), 1479.   Google Scholar

[2]

K. A. Hua, M. A. Tantaoui and W. Tavanapong, Video delivery technologies for large-scale deployment of multimedia applications,, Proc. IEEE, 92 (2004), 1439.  doi: 10.1109/JPROC.2004.832954.  Google Scholar

[3]

C. Huang and L. Xu, SRC: Stable rate control for streaming media,, IEEE GLOBECOM'03, 7 (2003), 4016.   Google Scholar

[4]

D. Jurca, J. Chakareski, J. P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Commun. Mag., 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[5]

H. Kanakia, P. P. Mishra and A. R. Reibman, An adaptive congestion control scheme for real time packet video transport,, IEEE/ACM Trans. Networking, 3 (1995), 671.   Google Scholar

[6]

L. S. Lam, J. Y. B. Lee, S. C. Liew and W. Wang, "A Transparent Rate Adaption Algorithm for Streaming Video over the Internet,", Proc. of the 18th International conference on advanced information networking and applications (AINA' 04), (2004).   Google Scholar

[7]

G. Latouche, P. A. Jacobs and D. P. Gaver, Finite Markov chain models skip-free in one direction,, Naval Research Logistics Quarterly, 31 (1984), 571.  doi: 10.1002/nav.3800310407.  Google Scholar

[8]

D. Marpe, T. Wiegand and G. J. Sullivan, The H.264/MPEG4 advanced video voding standard and its applications,, IEEE Commun. Mag., 44 (2006), 134.  doi: 10.1109/MCOM.2006.1678121.  Google Scholar

[9]

I. Moccagatta, S. Soudagar, J. Liang and H. Chen, Error-resilient coding in JPEG-2000 and MPEG-4,, IEEE J. Sel. Areas Commun., 18 (2000), 899.  doi: 10.1109/49.848245.  Google Scholar

[10]

J. D. Salehi, Z. L. Zhang, J. Kurose and D. Towsley, Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing,, IEEE/ACM Trans. Netw., 6 (1998), 397.   Google Scholar

[11]

H. Yoshida, K. Nogami and K. Satoda, Proposal and evaluation of joint rate control for stored video streaming,, Proc. IEEE 2010 International communications quality and reliability (CQR) workshop, (2010), 1.   Google Scholar

[1]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[2]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[3]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[6]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[7]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[8]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[9]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[10]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[11]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[12]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[13]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[14]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[15]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[16]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[17]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[18]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[19]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

[Back to Top]