October  2012, 8(4): 861-875. doi: 10.3934/jimo.2012.8.861

On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations

1. 

Department of Mathematics, Beijing Jiaotong University, 100044 Beijing

2. 

Department of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614-0506, United States

Received  September 2011 Revised  July 2012 Published  September 2012

A single-server retrial queue with two types of customers in which the server is subject to vacations along with breakdowns and repairs is studied. Two types of customers arrive to the system in accordance with two different independent Poisson flows. The service times of the two types of customers have two different independent general distributions. We assume that when a service is completed, the server will take vacations after an exponentially distributed reserved time. It is assumed that the server has an exponentially distributed lifetime, a generally distributed vacation time and a generally distributed repair time. There is no waiting space in front of the server, therefore, if the server is found busy, or on vacation, or down, the blocked two types of customers form two sources of repeated customers. Explicit expressions are derived for the expected number of retrial customers of each type. Additionally, by assuming both types of customers face linear costs for waiting and retrial, we discuss and compare the optimal and equilibrium retrial rates regarding the situations in which the customers are cooperative or noncooperative, respectively.
Citation: Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861
References:
[1]

J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems: A Computational Approach,", Springer, (2008).  doi: 10.1007/978-3-540-78725-9.  Google Scholar

[2]

A. Economou and S. Kanta, Equilibrium balking strategiesin the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.  doi: 10.1016/j.orl.2008.06.006.  Google Scholar

[3]

A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies insingle-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[4]

N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.  doi: 10.2307/1913415.  Google Scholar

[5]

A. Elcan, Optimal customer return rate for an M/M/1 queueing system with retrials,, Probability in the Engineering and Informational Sciences, 8 (1994), 521.  doi: 10.1017/S0269964800003600.  Google Scholar

[6]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[7]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.  doi: 10.1287/opre.1100.0907.  Google Scholar

[8]

R. Hassin and M. Haviv, On optimal and equilibrium retrial rates in a queueing system,, Probability in the Engineering and Informational Sciences, 10 (1996), 223.  doi: 10.1017/S0269964800004290.  Google Scholar

[9]

R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behaviorin Queueing Systems,", Kluwer Academic Publishers, (2003).  doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[10]

V. G. Kulkarni, A game theoretic model for two types of customers competing for service,, Operation Research Letters, 2 (1983), 119.   Google Scholar

[11]

V. G. Kulkarni, On queueing systems with retrials,, Journal of Applied Probability, 20 (1983), 380.  doi: 10.2307/3213810.  Google Scholar

[12]

P. Naor, The regulation of queue size by levying toll,, Econometrica, 37 (1969), 15.  doi: 10.2307/1909200.  Google Scholar

[13]

S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer, (2006).   Google Scholar

[15]

J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.  doi: 10.1023/A:1010918926884.  Google Scholar

[16]

J. Wang and F. Zhang, Equilibrium analysis of the observable queueswith balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.  doi: 10.1016/j.amc.2011.08.012.  Google Scholar

show all references

References:
[1]

J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems: A Computational Approach,", Springer, (2008).  doi: 10.1007/978-3-540-78725-9.  Google Scholar

[2]

A. Economou and S. Kanta, Equilibrium balking strategiesin the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.  doi: 10.1016/j.orl.2008.06.006.  Google Scholar

[3]

A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies insingle-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[4]

N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.  doi: 10.2307/1913415.  Google Scholar

[5]

A. Elcan, Optimal customer return rate for an M/M/1 queueing system with retrials,, Probability in the Engineering and Informational Sciences, 8 (1994), 521.  doi: 10.1017/S0269964800003600.  Google Scholar

[6]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[7]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.  doi: 10.1287/opre.1100.0907.  Google Scholar

[8]

R. Hassin and M. Haviv, On optimal and equilibrium retrial rates in a queueing system,, Probability in the Engineering and Informational Sciences, 10 (1996), 223.  doi: 10.1017/S0269964800004290.  Google Scholar

[9]

R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behaviorin Queueing Systems,", Kluwer Academic Publishers, (2003).  doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[10]

V. G. Kulkarni, A game theoretic model for two types of customers competing for service,, Operation Research Letters, 2 (1983), 119.   Google Scholar

[11]

V. G. Kulkarni, On queueing systems with retrials,, Journal of Applied Probability, 20 (1983), 380.  doi: 10.2307/3213810.  Google Scholar

[12]

P. Naor, The regulation of queue size by levying toll,, Econometrica, 37 (1969), 15.  doi: 10.2307/1909200.  Google Scholar

[13]

S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer, (2006).   Google Scholar

[15]

J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.  doi: 10.1023/A:1010918926884.  Google Scholar

[16]

J. Wang and F. Zhang, Equilibrium analysis of the observable queueswith balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.  doi: 10.1016/j.amc.2011.08.012.  Google Scholar

[1]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[2]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[3]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[4]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[5]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[6]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[7]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[8]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[9]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[10]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[11]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[12]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[13]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[14]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[15]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[18]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[19]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]