• Previous Article
    Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application
  • JIMO Home
  • This Issue
  • Next Article
    Stochastic decomposition in discrete-time queues with generalized vacations and applications
October  2012, 8(4): 939-968. doi: 10.3934/jimo.2012.8.939

M/M/c multiple synchronous vacation model with gated discipline

1. 

Department of Telecommunications, Budapest University of Technology and Economics, Budapest

2. 

Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, Kobe 658-8501

Received  September 2011 Revised  July 2012 Published  September 2012

In this paper we present the analysis of an M/M/c multiple synchronous vacation model. In contrast to the previous works on synchronous vacation model we consider the model with gated service discipline and with independent and identically distributed vacation periods. The analysis of this model requires different methodology compared to those ones used for synchronous vacation model so far. We provide the probability-generating function and the mean of the stationary number of customers at an arbitrary epoch as well as the Laplace-Stieljes transform and the mean of the stationary waiting time. The stationary distribution of the number of busy servers and the stability of the system are also considered. In the final part of the paper numerical examples illustrate the computational procedure.
    This vacation queue is suitable to model a single operator controlled system consisting of more machines. Hence the provided analysis can be applied to study and optimize such systems.
Citation: Zsolt Saffer, Wuyi Yue. M/M/c multiple synchronous vacation model with gated discipline. Journal of Industrial & Management Optimization, 2012, 8 (4) : 939-968. doi: 10.3934/jimo.2012.8.939
References:
[1]

A. Begum and M. Nadarajan, Multiserver markovian queueing system with vacation,, Optimization, 41 (1997), 71.  doi: 10.1080/02331939708844326.  Google Scholar

[2]

S. C. Borst and O. J. Boxma, Polling models with and without switch over times,, Operations Research, 45 (1997), 536.  doi: 10.1287/opre.45.4.536.  Google Scholar

[3]

X. Chao and Y. Zhao, Analysis of multi-server queues with station and server vacations,, European Journal of Operational Research, 110 (1998), 392.  doi: 10.1016/S0377-2217(97)00253-1.  Google Scholar

[4]

B. T. Doshi, Queueing systems with vacations-a survey,, Queueing Systems, 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[5]

M. Kuczma, "Functional Equations in a Single Variable,", PWN-Polish Scientific Publishers, (1968).   Google Scholar

[6]

Y. Levy and U. Yechiali, An M/M/s queue with server's vacations,, In INFOR 14, (1976), 153.   Google Scholar

[7]

Z. Saffer, An introduction to classical cyclic polling model,, In Proc. of the 14th Int. Conf. on Analytical and Stochastic Modelling Techniques and Applications (ASMTA'07), (2007), 59.   Google Scholar

[8]

H. Takagi, "Analysis of Polling Systems,", MIT Press, (1986).   Google Scholar

[9]

H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation, Vacation and Prority Systems,", North-Holland, (1991).   Google Scholar

[10]

N. Tian and G. Zhang, "Vacation Queueing Models: Theory and Applications. Series: International Series in Operations Research & Management Science,", Springer-Verlag, (2006).   Google Scholar

[11]

N. Tian and L. Li, The M/M/c queue with PH synchronous vacations,, Journal of Systems Science and Complexity, 13 (2000), 007.   Google Scholar

[12]

N. Tian and G. Zhang, Stationary distributions of GI/M/c queue with PH type vacations,, Queueing Systems, 44 (2003).  doi: 10.1023/A:1024424606007.  Google Scholar

[13]

R. W. Wolff, Poisson arrivals see times averages,, Operations Research, 30 (1982), 223.  doi: 10.1287/opre.30.2.223.  Google Scholar

[14]

W. Yue, Y. Takahashi and H. Takagi, "Advances in Queueing Theory and Network Applications,", Springer Science + Business Media, (2010).   Google Scholar

[15]

G. Zhang and N. Tian, Analysis of queueing systems with synchronous single vacation for some servers,, Queueing System, 45 (2003), 161.  doi: 10.1023/A:1026097723093.  Google Scholar

[16]

G. Zhang and N. Tian, An analysis of queueing systems with multi-task servers,, European Journal of Operational Research, 156 (2004), 375.  doi: 10.1016/S0377-2217(03)00015-8.  Google Scholar

[17]

R. W. Wolff, "Stochastic Modeling and the Theory of Queues,", Prentice-Hall, (1989).   Google Scholar

show all references

References:
[1]

A. Begum and M. Nadarajan, Multiserver markovian queueing system with vacation,, Optimization, 41 (1997), 71.  doi: 10.1080/02331939708844326.  Google Scholar

[2]

S. C. Borst and O. J. Boxma, Polling models with and without switch over times,, Operations Research, 45 (1997), 536.  doi: 10.1287/opre.45.4.536.  Google Scholar

[3]

X. Chao and Y. Zhao, Analysis of multi-server queues with station and server vacations,, European Journal of Operational Research, 110 (1998), 392.  doi: 10.1016/S0377-2217(97)00253-1.  Google Scholar

[4]

B. T. Doshi, Queueing systems with vacations-a survey,, Queueing Systems, 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[5]

M. Kuczma, "Functional Equations in a Single Variable,", PWN-Polish Scientific Publishers, (1968).   Google Scholar

[6]

Y. Levy and U. Yechiali, An M/M/s queue with server's vacations,, In INFOR 14, (1976), 153.   Google Scholar

[7]

Z. Saffer, An introduction to classical cyclic polling model,, In Proc. of the 14th Int. Conf. on Analytical and Stochastic Modelling Techniques and Applications (ASMTA'07), (2007), 59.   Google Scholar

[8]

H. Takagi, "Analysis of Polling Systems,", MIT Press, (1986).   Google Scholar

[9]

H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation, Vacation and Prority Systems,", North-Holland, (1991).   Google Scholar

[10]

N. Tian and G. Zhang, "Vacation Queueing Models: Theory and Applications. Series: International Series in Operations Research & Management Science,", Springer-Verlag, (2006).   Google Scholar

[11]

N. Tian and L. Li, The M/M/c queue with PH synchronous vacations,, Journal of Systems Science and Complexity, 13 (2000), 007.   Google Scholar

[12]

N. Tian and G. Zhang, Stationary distributions of GI/M/c queue with PH type vacations,, Queueing Systems, 44 (2003).  doi: 10.1023/A:1024424606007.  Google Scholar

[13]

R. W. Wolff, Poisson arrivals see times averages,, Operations Research, 30 (1982), 223.  doi: 10.1287/opre.30.2.223.  Google Scholar

[14]

W. Yue, Y. Takahashi and H. Takagi, "Advances in Queueing Theory and Network Applications,", Springer Science + Business Media, (2010).   Google Scholar

[15]

G. Zhang and N. Tian, Analysis of queueing systems with synchronous single vacation for some servers,, Queueing System, 45 (2003), 161.  doi: 10.1023/A:1026097723093.  Google Scholar

[16]

G. Zhang and N. Tian, An analysis of queueing systems with multi-task servers,, European Journal of Operational Research, 156 (2004), 375.  doi: 10.1016/S0377-2217(03)00015-8.  Google Scholar

[17]

R. W. Wolff, "Stochastic Modeling and the Theory of Queues,", Prentice-Hall, (1989).   Google Scholar

[1]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[2]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[3]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[6]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[7]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[8]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[9]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[10]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[12]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[13]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[14]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[15]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[16]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[17]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[18]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[19]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]