October  2012, 8(4): 969-986. doi: 10.3934/jimo.2012.8.969

Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application

1. 

Sungkyunkwan University, Department of Systems Management Engineering, Suwon, 440-746, South Korea, South Korea, South Korea

2. 

Dongguk Univeristy-SEOUL, Department of Business Administration, Seoul, 110-715, South Korea

3. 

Inha University, Institute for Information and Electronics Research, Incheon, 402-751, South Korea

Received  September 2011 Revised  July 2012 Published  September 2012

The checkpoint and rollback scheme is a useful fault-tolerance method for mobile devices in wireless environments. Since battery power is one of the most critical resources for mobile devices, it is important to identify optimal checkpoint intervals that minimize power consumption. In this paper, we propose a method that minimizes power consumption in wireless remote checkpoint environments by considering environmental parameters such as device failure rate, wireless link error rate, and checkpoint overhead. To evaluate the proposed solution, we conducted analytical estimations, simulations, and experimental measurements in a real test-bed.
Citation: Sung-Hwa Lim, Se Won Lee, Byoung-Hoon Lee, Seongil Lee, Ho Woo Lee. Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application. Journal of Industrial & Management Optimization, 2012, 8 (4) : 969-986. doi: 10.3934/jimo.2012.8.969
References:
[1]

S. Biswas and S. Neogy, A low overhead checkpointing scheme for mobile computing systems,, in, (2007), 700.   Google Scholar

[2]

S. Baek and B. D. Choi, Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network,, J. Industrial and Management Optimization, 5 (2009), 481.  doi: 10.3934/jimo.2009.5.481.  Google Scholar

[3]

R. C. Baumann, "Soft Errors in Commercial Semiconductor Technology: Overview and Scaling Trends,", in, (2002).   Google Scholar

[4]

K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig, Analytic models for rollback and recovery strategies in data base systems,, IEEE Trans. Software Eng., 1 (1975), 100.   Google Scholar

[5]

I.-R. Chen, B. Gu, S. E. George and S.-T. Cheng, On failure recoverability of client-server applications in mobile wireless environments,, IEEE Trans. on Reliability, 54 (2005), 115.  doi: 10.1109/TR.2004.837518.  Google Scholar

[6]

C. Constantinescu, Trends and challenges in VLSI circuit reliability,, IEEE Micro, 23 (2003), 14.  doi: 10.1109/MM.2003.1225959.  Google Scholar

[7]

J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps,, Future Generation Computer Systems, 22 (2006), 303.  doi: 10.1016/j.future.2004.11.016.  Google Scholar

[8]

S. Gadiraju and V. Kumar, Recovery in the mobile wireless environment using mobile agents,, IEEE Transactions on Mobile Computing, 3 (2004), 180.  doi: 10.1109/TMC.2004.13.  Google Scholar

[9]

K.-H. Han, J.-H. Kim, Y.-B. Ko and W.-S. Yoon, An energy efficient broadcasting for mobile devices using a cache scheme,, in Lecture Notes in Computer Science (Proc. ICCS 2004), (2004), 598.   Google Scholar

[10]

W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks,", in proceedings of Hawaii International Conference on System Sciences, (2000).   Google Scholar

[11]

P. Kumar, P. Gupta and A. K. Solanki, Dealing with rrequent aborts in minimum-process coordinated checkpointing algorithm for mobile distributed systems,, Int. J. Computer Applications, 3 (2010), 7.   Google Scholar

[12]

G.-H. Li and H. Wang, A novel min-process checkpointing scheme for mobile computing systems,, J. Systems Architecture, 51 (2005), 45.  doi: 10.1016/j.sysarc.2004.07.001.  Google Scholar

[13]

S.-H. Lim, S. W. Lee, B.-H. Lee, S. Lee and H. W. Lee, Energy-aware checkpoint intervals in error-prone mobile networks,, in proceedings of QTNA, 2011 (2011), 128.   Google Scholar

[14]

S.-H. Lim, S. W. Lee, B.-H. Lee and S. Lee, Power-aware optimal checkpoint intervals for mobile consumer devices,, IEEE Trans. Consumer Electronics, 4 (2011), 1637.  doi: 10.1109/TCE.2011.6131136.  Google Scholar

[15]

B. McFarland and M. Wong, The family dynamics of 802.11,, ACM Queue, 1 (2003), 28.  doi: 10.1145/846057.864025.  Google Scholar

[16]

D. K. Pradhan, P. Krishna and N. H. Vaidya, Recoverable mobile environment: design and trade-off analysis,, in proceedings of the 26th Int Symp. on Fault Tolerant Computing Systems, (1996), 16.   Google Scholar

[17]

S. M. Ross, "Stochastic Processes,", 2nd edition, (1996).   Google Scholar

[18]

N. H. Vaidya, On checkpoint latency,, in, (1995), 60.   Google Scholar

[19]

N. T. Vijaykumar, I. Pomeranz and K. Cheng, Transient-fault recovery using simultaneous multithreading,, in, (2002), 87.   Google Scholar

[20]

J. W. Young, A first order approximation to the optimum checkpoint interval,, Communications on the ACM, 17 (1974), 530.  doi: 10.1145/361147.361115.  Google Scholar

[21]

Z. Zhang, D.-C. Zuo, Y.-W. Ci and X.-Z. Yang, The checkpoint interval optimization of kernel-level rollback recovery based on the embedded mobile computing system,, in proceedings of IEEE International Conference on Computer and Information Technology Workshops, (2008), 521.   Google Scholar

[22]

, "Mobile DRAM Power-Saving Features and Power Calculations,", Technical note TN-46-12, (2009), 46.   Google Scholar

[23]

, CW1200 : 802.11n dual-band WLAN system-on-chip,, Data Sheet, ().   Google Scholar

[24]

, "Power Consumption and Energy Efficiency Comparisons of WLAN Products,", White Paper, (2003).   Google Scholar

[25]

, "HC25 Hardware Interface Description,", Date Sheet v.1.0, (2007).   Google Scholar

show all references

References:
[1]

S. Biswas and S. Neogy, A low overhead checkpointing scheme for mobile computing systems,, in, (2007), 700.   Google Scholar

[2]

S. Baek and B. D. Choi, Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network,, J. Industrial and Management Optimization, 5 (2009), 481.  doi: 10.3934/jimo.2009.5.481.  Google Scholar

[3]

R. C. Baumann, "Soft Errors in Commercial Semiconductor Technology: Overview and Scaling Trends,", in, (2002).   Google Scholar

[4]

K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig, Analytic models for rollback and recovery strategies in data base systems,, IEEE Trans. Software Eng., 1 (1975), 100.   Google Scholar

[5]

I.-R. Chen, B. Gu, S. E. George and S.-T. Cheng, On failure recoverability of client-server applications in mobile wireless environments,, IEEE Trans. on Reliability, 54 (2005), 115.  doi: 10.1109/TR.2004.837518.  Google Scholar

[6]

C. Constantinescu, Trends and challenges in VLSI circuit reliability,, IEEE Micro, 23 (2003), 14.  doi: 10.1109/MM.2003.1225959.  Google Scholar

[7]

J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps,, Future Generation Computer Systems, 22 (2006), 303.  doi: 10.1016/j.future.2004.11.016.  Google Scholar

[8]

S. Gadiraju and V. Kumar, Recovery in the mobile wireless environment using mobile agents,, IEEE Transactions on Mobile Computing, 3 (2004), 180.  doi: 10.1109/TMC.2004.13.  Google Scholar

[9]

K.-H. Han, J.-H. Kim, Y.-B. Ko and W.-S. Yoon, An energy efficient broadcasting for mobile devices using a cache scheme,, in Lecture Notes in Computer Science (Proc. ICCS 2004), (2004), 598.   Google Scholar

[10]

W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks,", in proceedings of Hawaii International Conference on System Sciences, (2000).   Google Scholar

[11]

P. Kumar, P. Gupta and A. K. Solanki, Dealing with rrequent aborts in minimum-process coordinated checkpointing algorithm for mobile distributed systems,, Int. J. Computer Applications, 3 (2010), 7.   Google Scholar

[12]

G.-H. Li and H. Wang, A novel min-process checkpointing scheme for mobile computing systems,, J. Systems Architecture, 51 (2005), 45.  doi: 10.1016/j.sysarc.2004.07.001.  Google Scholar

[13]

S.-H. Lim, S. W. Lee, B.-H. Lee, S. Lee and H. W. Lee, Energy-aware checkpoint intervals in error-prone mobile networks,, in proceedings of QTNA, 2011 (2011), 128.   Google Scholar

[14]

S.-H. Lim, S. W. Lee, B.-H. Lee and S. Lee, Power-aware optimal checkpoint intervals for mobile consumer devices,, IEEE Trans. Consumer Electronics, 4 (2011), 1637.  doi: 10.1109/TCE.2011.6131136.  Google Scholar

[15]

B. McFarland and M. Wong, The family dynamics of 802.11,, ACM Queue, 1 (2003), 28.  doi: 10.1145/846057.864025.  Google Scholar

[16]

D. K. Pradhan, P. Krishna and N. H. Vaidya, Recoverable mobile environment: design and trade-off analysis,, in proceedings of the 26th Int Symp. on Fault Tolerant Computing Systems, (1996), 16.   Google Scholar

[17]

S. M. Ross, "Stochastic Processes,", 2nd edition, (1996).   Google Scholar

[18]

N. H. Vaidya, On checkpoint latency,, in, (1995), 60.   Google Scholar

[19]

N. T. Vijaykumar, I. Pomeranz and K. Cheng, Transient-fault recovery using simultaneous multithreading,, in, (2002), 87.   Google Scholar

[20]

J. W. Young, A first order approximation to the optimum checkpoint interval,, Communications on the ACM, 17 (1974), 530.  doi: 10.1145/361147.361115.  Google Scholar

[21]

Z. Zhang, D.-C. Zuo, Y.-W. Ci and X.-Z. Yang, The checkpoint interval optimization of kernel-level rollback recovery based on the embedded mobile computing system,, in proceedings of IEEE International Conference on Computer and Information Technology Workshops, (2008), 521.   Google Scholar

[22]

, "Mobile DRAM Power-Saving Features and Power Calculations,", Technical note TN-46-12, (2009), 46.   Google Scholar

[23]

, CW1200 : 802.11n dual-band WLAN system-on-chip,, Data Sheet, ().   Google Scholar

[24]

, "Power Consumption and Energy Efficiency Comparisons of WLAN Products,", White Paper, (2003).   Google Scholar

[25]

, "HC25 Hardware Interface Description,", Date Sheet v.1.0, (2007).   Google Scholar

[1]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[2]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[3]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[4]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[5]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[6]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[7]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[8]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[9]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[10]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[11]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[12]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[13]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[14]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[15]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[16]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[17]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[18]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[19]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[20]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (2)

[Back to Top]