October  2012, 8(4): 969-986. doi: 10.3934/jimo.2012.8.969

Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application

1. 

Sungkyunkwan University, Department of Systems Management Engineering, Suwon, 440-746, South Korea, South Korea, South Korea

2. 

Dongguk Univeristy-SEOUL, Department of Business Administration, Seoul, 110-715, South Korea

3. 

Inha University, Institute for Information and Electronics Research, Incheon, 402-751, South Korea

Received  September 2011 Revised  July 2012 Published  September 2012

The checkpoint and rollback scheme is a useful fault-tolerance method for mobile devices in wireless environments. Since battery power is one of the most critical resources for mobile devices, it is important to identify optimal checkpoint intervals that minimize power consumption. In this paper, we propose a method that minimizes power consumption in wireless remote checkpoint environments by considering environmental parameters such as device failure rate, wireless link error rate, and checkpoint overhead. To evaluate the proposed solution, we conducted analytical estimations, simulations, and experimental measurements in a real test-bed.
Citation: Sung-Hwa Lim, Se Won Lee, Byoung-Hoon Lee, Seongil Lee, Ho Woo Lee. Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application. Journal of Industrial and Management Optimization, 2012, 8 (4) : 969-986. doi: 10.3934/jimo.2012.8.969
References:
[1]

S. Biswas and S. Neogy, A low overhead checkpointing scheme for mobile computing systems, in "Proceedings of the International Conference on Advanced Computing and Communications," IEEE, (2007), 700-705.

[2]

S. Baek and B. D. Choi, Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network, J. Industrial and Management Optimization, 5 (2009), 481-492. doi: 10.3934/jimo.2009.5.481.

[3]

R. C. Baumann, "Soft Errors in Commercial Semiconductor Technology: Overview and Scaling Trends," in "IEEE 2002", Reliability Physics Tutorial Notes, Reliability Fundamentals, 2002.

[4]

K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig, Analytic models for rollback and recovery strategies in data base systems, IEEE Trans. Software Eng., 1 (1975), 100-110.

[5]

I.-R. Chen, B. Gu, S. E. George and S.-T. Cheng, On failure recoverability of client-server applications in mobile wireless environments, IEEE Trans. on Reliability, 54 (2005), 115-122. doi: 10.1109/TR.2004.837518.

[6]

C. Constantinescu, Trends and challenges in VLSI circuit reliability, IEEE Micro, 23 (2003), 14-19. doi: 10.1109/MM.2003.1225959.

[7]

J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps, Future Generation Computer Systems, 22 (2006), 303-312. doi: 10.1016/j.future.2004.11.016.

[8]

S. Gadiraju and V. Kumar, Recovery in the mobile wireless environment using mobile agents, IEEE Transactions on Mobile Computing, 3 (2004), 180-191. doi: 10.1109/TMC.2004.13.

[9]

K.-H. Han, J.-H. Kim, Y.-B. Ko and W.-S. Yoon, An energy efficient broadcasting for mobile devices using a cache scheme, in Lecture Notes in Computer Science (Proc. ICCS 2004), Springer, (2004), 598-601.

[10]

W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks," in proceedings of Hawaii International Conference on System Sciences, (2000), 8020.

[11]

P. Kumar, P. Gupta and A. K. Solanki, Dealing with rrequent aborts in minimum-process coordinated checkpointing algorithm for mobile distributed systems, Int. J. Computer Applications, 3 (2010), 7-12.

[12]

G.-H. Li and H. Wang, A novel min-process checkpointing scheme for mobile computing systems, J. Systems Architecture, 51 (2005), 45-61. doi: 10.1016/j.sysarc.2004.07.001.

[13]

S.-H. Lim, S. W. Lee, B.-H. Lee, S. Lee and H. W. Lee, Energy-aware checkpoint intervals in error-prone mobile networks, in proceedings of QTNA, 2011 (2011), 128-133.

[14]

S.-H. Lim, S. W. Lee, B.-H. Lee and S. Lee, Power-aware optimal checkpoint intervals for mobile consumer devices, IEEE Trans. Consumer Electronics, 4 (2011), 1637-1645. doi: 10.1109/TCE.2011.6131136.

[15]

B. McFarland and M. Wong, The family dynamics of 802.11, ACM Queue, 1 (2003), 28-38. doi: 10.1145/846057.864025.

[16]

D. K. Pradhan, P. Krishna and N. H. Vaidya, Recoverable mobile environment: design and trade-off analysis, in proceedings of the 26th Int Symp. on Fault Tolerant Computing Systems, (1996), 16-25.

[17]

S. M. Ross, "Stochastic Processes," 2nd edition, John Wiley & Sons, 1996.

[18]

N. H. Vaidya, On checkpoint latency, in "Proceedings of Pacific Rim International Symposium on Fault-Tolerant Systems," (1995), 60-65.

[19]

N. T. Vijaykumar, I. Pomeranz and K. Cheng, Transient-fault recovery using simultaneous multithreading, in "Proceedings of 29th Int Symp." Computer Architecture, IEEE, (2002), 87-98.

[20]

J. W. Young, A first order approximation to the optimum checkpoint interval, Communications on the ACM, 17 (1974), 530-531. doi: 10.1145/361147.361115.

[21]

Z. Zhang, D.-C. Zuo, Y.-W. Ci and X.-Z. Yang, The checkpoint interval optimization of kernel-level rollback recovery based on the embedded mobile computing system, in proceedings of IEEE International Conference on Computer and Information Technology Workshops, IEEE, (2008), 521-526.

[22]

, "Mobile DRAM Power-Saving Features and Power Calculations,", Technical note TN-46-12, (2009), 46. 

[23]

, CW1200 : 802.11n dual-band WLAN system-on-chip, Data Sheet, ST Ericsson.

[24]

, "Power Consumption and Energy Efficiency Comparisons of WLAN Products,", White Paper, (2003). 

[25]

, "HC25 Hardware Interface Description,", Date Sheet v.1.0, (2007). 

show all references

References:
[1]

S. Biswas and S. Neogy, A low overhead checkpointing scheme for mobile computing systems, in "Proceedings of the International Conference on Advanced Computing and Communications," IEEE, (2007), 700-705.

[2]

S. Baek and B. D. Choi, Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network, J. Industrial and Management Optimization, 5 (2009), 481-492. doi: 10.3934/jimo.2009.5.481.

[3]

R. C. Baumann, "Soft Errors in Commercial Semiconductor Technology: Overview and Scaling Trends," in "IEEE 2002", Reliability Physics Tutorial Notes, Reliability Fundamentals, 2002.

[4]

K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig, Analytic models for rollback and recovery strategies in data base systems, IEEE Trans. Software Eng., 1 (1975), 100-110.

[5]

I.-R. Chen, B. Gu, S. E. George and S.-T. Cheng, On failure recoverability of client-server applications in mobile wireless environments, IEEE Trans. on Reliability, 54 (2005), 115-122. doi: 10.1109/TR.2004.837518.

[6]

C. Constantinescu, Trends and challenges in VLSI circuit reliability, IEEE Micro, 23 (2003), 14-19. doi: 10.1109/MM.2003.1225959.

[7]

J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps, Future Generation Computer Systems, 22 (2006), 303-312. doi: 10.1016/j.future.2004.11.016.

[8]

S. Gadiraju and V. Kumar, Recovery in the mobile wireless environment using mobile agents, IEEE Transactions on Mobile Computing, 3 (2004), 180-191. doi: 10.1109/TMC.2004.13.

[9]

K.-H. Han, J.-H. Kim, Y.-B. Ko and W.-S. Yoon, An energy efficient broadcasting for mobile devices using a cache scheme, in Lecture Notes in Computer Science (Proc. ICCS 2004), Springer, (2004), 598-601.

[10]

W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks," in proceedings of Hawaii International Conference on System Sciences, (2000), 8020.

[11]

P. Kumar, P. Gupta and A. K. Solanki, Dealing with rrequent aborts in minimum-process coordinated checkpointing algorithm for mobile distributed systems, Int. J. Computer Applications, 3 (2010), 7-12.

[12]

G.-H. Li and H. Wang, A novel min-process checkpointing scheme for mobile computing systems, J. Systems Architecture, 51 (2005), 45-61. doi: 10.1016/j.sysarc.2004.07.001.

[13]

S.-H. Lim, S. W. Lee, B.-H. Lee, S. Lee and H. W. Lee, Energy-aware checkpoint intervals in error-prone mobile networks, in proceedings of QTNA, 2011 (2011), 128-133.

[14]

S.-H. Lim, S. W. Lee, B.-H. Lee and S. Lee, Power-aware optimal checkpoint intervals for mobile consumer devices, IEEE Trans. Consumer Electronics, 4 (2011), 1637-1645. doi: 10.1109/TCE.2011.6131136.

[15]

B. McFarland and M. Wong, The family dynamics of 802.11, ACM Queue, 1 (2003), 28-38. doi: 10.1145/846057.864025.

[16]

D. K. Pradhan, P. Krishna and N. H. Vaidya, Recoverable mobile environment: design and trade-off analysis, in proceedings of the 26th Int Symp. on Fault Tolerant Computing Systems, (1996), 16-25.

[17]

S. M. Ross, "Stochastic Processes," 2nd edition, John Wiley & Sons, 1996.

[18]

N. H. Vaidya, On checkpoint latency, in "Proceedings of Pacific Rim International Symposium on Fault-Tolerant Systems," (1995), 60-65.

[19]

N. T. Vijaykumar, I. Pomeranz and K. Cheng, Transient-fault recovery using simultaneous multithreading, in "Proceedings of 29th Int Symp." Computer Architecture, IEEE, (2002), 87-98.

[20]

J. W. Young, A first order approximation to the optimum checkpoint interval, Communications on the ACM, 17 (1974), 530-531. doi: 10.1145/361147.361115.

[21]

Z. Zhang, D.-C. Zuo, Y.-W. Ci and X.-Z. Yang, The checkpoint interval optimization of kernel-level rollback recovery based on the embedded mobile computing system, in proceedings of IEEE International Conference on Computer and Information Technology Workshops, IEEE, (2008), 521-526.

[22]

, "Mobile DRAM Power-Saving Features and Power Calculations,", Technical note TN-46-12, (2009), 46. 

[23]

, CW1200 : 802.11n dual-band WLAN system-on-chip, Data Sheet, ST Ericsson.

[24]

, "Power Consumption and Energy Efficiency Comparisons of WLAN Products,", White Paper, (2003). 

[25]

, "HC25 Hardware Interface Description,", Date Sheet v.1.0, (2007). 

[1]

Weidong Bao, Haoran Ji, Xiaomin Zhu, Ji Wang, Wenhua Xiao, Jianhong Wu. ACO-based solution for computation offloading in mobile cloud computing. Big Data & Information Analytics, 2016, 1 (1) : 1-13. doi: 10.3934/bdia.2016.1.1

[2]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[3]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[4]

Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241

[5]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[6]

Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

[7]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[8]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control and Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[9]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[10]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations and Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[11]

Gianluca Favre, Marlies Pirner, Christian Schmeiser. Thermalization of a rarefied gas with total energy conservation: Existence, hypocoercivity, macroscopic limit. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022015

[12]

Tomasz Komorowski, Stefano Olla, Marielle Simon. Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities. Kinetic and Related Models, 2018, 11 (3) : 615-645. doi: 10.3934/krm.2018026

[13]

Maria Cameron. Computing the asymptotic spectrum for networks representing energy landscapes using the minimum spanning tree. Networks and Heterogeneous Media, 2014, 9 (3) : 383-416. doi: 10.3934/nhm.2014.9.383

[14]

Xuena Yan, Shunfu Jin, Wuyi Yue, Yutaka Takahashi. Performance analysis and system optimization of an energy-saving mechanism in cloud computing with correlated traffic. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021106

[15]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial and Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[16]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[17]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[18]

Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593

[19]

Badal Joshi. A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1077-1105. doi: 10.3934/dcdsb.2015.20.1077

[20]

Ralf Banisch, Carsten Hartmann. Addendum to "A sparse Markov chain approximation of LQ-type stochastic control problems". Mathematical Control and Related Fields, 2017, 7 (4) : 623-623. doi: 10.3934/mcrf.2017023

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (2)

[Back to Top]