• Previous Article
    A modified differential evolution based solution technique for economic dispatch problems
  • JIMO Home
  • This Issue
  • Next Article
    Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application
October  2012, 8(4): 987-1015. doi: 10.3934/jimo.2012.8.987

A model for buyer and supplier coordination and information sharing in order-up-to systems

1. 

Department of Industrial and Management Engineering, Hanyang University, Erica Campus, Ansan, South Korea

2. 

Department of Industrial and Management Engineering, Graduate School, Hanyang University, Seoul, South Korea

Received  January 2011 Revised  May 2012 Published  September 2012

This study analyzed a logistics system consisting of a supplier that produces and delivers a single product and a buyer that receives and sells the product to retail customers. In this type of logistics system, the supplier and the buyer agree upon a contract specifying that the supplier will deliver the amount of product needed to increase the inventory of the buyer up to a predetermined order-up-to level at the beginning of each time period. A mathematical model was developed to construct methods to find the cost minimizing cycle lengths for both parties and the order-up-to level for the buyer. The proposed methods were tested for accuracy and execution speed in a variety of experimental settings. Analysis of the results revealed that the proposed methods determined the optimal control parameters for each party in a short time frame. Ultimately, a coordination mechanism based on a system-wide cost minimization policy was proposed to ensure that system-wide costs are minimized while, at the same time, both parties benefit from coordinating their efforts.
Citation: Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987
References:
[1]

R. Akella and R. Anupindi, Diversification under supply uncertainty,, Management Science, 39 (1993), 944.  doi: 10.1287/mnsc.39.8.944.  Google Scholar

[2]

A. Banerjee, A supplier's pricing model under a customer's economic purchasing policy,, Omega, 14 (1986), 409.  doi: 10.1016/0305-0483(86)90082-4.  Google Scholar

[3]

M. Bendaya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time,, International Journal of Production Economics, 92 (2004), 75.  doi: 10.1016/j.ijpe.2003.09.012.  Google Scholar

[4]

J. F. Crowther, Rationale for quantity discounts,, Harvard Business Review, 42 (1964), 121.   Google Scholar

[5]

A. Eynan and D. H. Kropp, Effective and simple EOQ-like solutions for stochastic demand periodic review systems,, European Journal of Operational Research, 180 (2007), 1135.  doi: 10.1016/j.ejor.2006.05.015.  Google Scholar

[6]

S. K. Goyal, Note-Comment on: A generalized quantity discount pricing model to increase supplier's profit,, Management Science, 33 (1987), 1635.  doi: 10.1287/mnsc.33.12.1635.  Google Scholar

[7]

S. K. Goyal, A one vendor multi buyer integrated inventory model: A comment,, European Journal of Operational Research, 82 (1995), 209.  doi: 10.1016/0377-2217(93)E0357-4.  Google Scholar

[8]

H. Gurnani, A study of quantity discount pricing models with different ordering structures: Order coordination, order consolidation and multi-tier ordering hierarchy,, International Journal of Production Economics, 72 (2001), 203.  doi: 10.1016/S0925-5273(00)00159-6.  Google Scholar

[9]

R. M. Hill, The single vendor, single buyer integrated production inventory model with a generalized policy,, European Journal of Operational Research, 97 (1997), 493.  doi: 10.1016/S0377-2217(96)00267-6.  Google Scholar

[10]

T. D. Klastorin, K. Moinzadeh and J. Son, Coordinating orders in supply chains through price discounts,, IIE Transactions, 34 (2002), 679.  doi: 10.1080/07408170208928904.  Google Scholar

[11]

M. Khouja, Optimizing inventory decisions in a multistage multi customer supply chain,, Transportation Research Part E: Logistics and Transportation Review, 39 (2003), 193.  doi: 10.1016/S1366-5545(02)00036-4.  Google Scholar

[12]

B. W. Kim, J. M. Y. Leung, K. T. Park, G. Zhang and S. C. Lee, Configuring a manufacturing firm's supply network with multiple supplier,, IIE transactions, 34 (2002), 663.  doi: 10.1080/07408170208928903.  Google Scholar

[13]

L. Lu, Theory and methodology: A one vendor multi buyer integrated inventory model,, European Journal of Operational Research, 81 (1995), 312.  doi: 10.1016/0377-2217(93)E0253-T.  Google Scholar

[14]

A. K. Misra, Selective discount for supplier buyer coordination using common replenishment epochs,, European Journal of Operational Research, 153 (2004), 751.  doi: 10.1016/S0377-2217(02)00811-1.  Google Scholar

[15]

J. P. Monahan, A quantity discount pricing model to increase vendor profits,, Management Science, 30 (1984), 720.  doi: 10.1287/mnsc.30.6.720.  Google Scholar

[16]

C. L. Munson and M. J. Rosenblatt, Coordinating a three level supply chain with quantity discounts,, IIE Transactions, 33 (2001), 371.  doi: 10.1080/07408170108936836.  Google Scholar

[17]

L. Y. Ouyang, K. S. Wu and C. H. Ho, Integrated vendoruyer cooperative models with stochastic demand in controllable lead time,, International Journal of Production Economics, 92 (2004), 255.  doi: 10.1016/j.ijpe.2003.10.016.  Google Scholar

[18]

M. J. Rosenblatt and H. L. Lee, Improving profitability with quantity discounts under fixed demand,, IIE Transactions, 17 (1985), 388.  doi: 10.1080/07408178508975319.  Google Scholar

[19]

S. M. Ross, "Stochastic Processes,", 2nd edition, (1995).   Google Scholar

[20]

S. P. Sarma, D. Acharya and S. K. Goyal, Buyer vendor coordination models in supply chain management,, European Journal of Operational Research, 175 (2006), 1.  doi: 10.1016/j.ejor.2005.08.006.  Google Scholar

[21]

M. Sharafali and H. C. Co, Some models for understanding the cooperation between the supplier and the buyer,, International Journal of Production Research, 38 (2000), 3425.  doi: 10.1080/002075400422734.  Google Scholar

[22]

E. A. Silver, D.F. Pyke and R. Peterson, "Inventory Management and Production Planning and Scheduling,", 3nd edition, (1998).   Google Scholar

[23]

S. Viswanathan and R. Piplani, Coordinating supply chain inventories through common replenishment epoch,, European Journal of Operational Research, 129 (2001), 277.  doi: 10.1016/S0377-2217(00)00225-3.  Google Scholar

show all references

References:
[1]

R. Akella and R. Anupindi, Diversification under supply uncertainty,, Management Science, 39 (1993), 944.  doi: 10.1287/mnsc.39.8.944.  Google Scholar

[2]

A. Banerjee, A supplier's pricing model under a customer's economic purchasing policy,, Omega, 14 (1986), 409.  doi: 10.1016/0305-0483(86)90082-4.  Google Scholar

[3]

M. Bendaya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time,, International Journal of Production Economics, 92 (2004), 75.  doi: 10.1016/j.ijpe.2003.09.012.  Google Scholar

[4]

J. F. Crowther, Rationale for quantity discounts,, Harvard Business Review, 42 (1964), 121.   Google Scholar

[5]

A. Eynan and D. H. Kropp, Effective and simple EOQ-like solutions for stochastic demand periodic review systems,, European Journal of Operational Research, 180 (2007), 1135.  doi: 10.1016/j.ejor.2006.05.015.  Google Scholar

[6]

S. K. Goyal, Note-Comment on: A generalized quantity discount pricing model to increase supplier's profit,, Management Science, 33 (1987), 1635.  doi: 10.1287/mnsc.33.12.1635.  Google Scholar

[7]

S. K. Goyal, A one vendor multi buyer integrated inventory model: A comment,, European Journal of Operational Research, 82 (1995), 209.  doi: 10.1016/0377-2217(93)E0357-4.  Google Scholar

[8]

H. Gurnani, A study of quantity discount pricing models with different ordering structures: Order coordination, order consolidation and multi-tier ordering hierarchy,, International Journal of Production Economics, 72 (2001), 203.  doi: 10.1016/S0925-5273(00)00159-6.  Google Scholar

[9]

R. M. Hill, The single vendor, single buyer integrated production inventory model with a generalized policy,, European Journal of Operational Research, 97 (1997), 493.  doi: 10.1016/S0377-2217(96)00267-6.  Google Scholar

[10]

T. D. Klastorin, K. Moinzadeh and J. Son, Coordinating orders in supply chains through price discounts,, IIE Transactions, 34 (2002), 679.  doi: 10.1080/07408170208928904.  Google Scholar

[11]

M. Khouja, Optimizing inventory decisions in a multistage multi customer supply chain,, Transportation Research Part E: Logistics and Transportation Review, 39 (2003), 193.  doi: 10.1016/S1366-5545(02)00036-4.  Google Scholar

[12]

B. W. Kim, J. M. Y. Leung, K. T. Park, G. Zhang and S. C. Lee, Configuring a manufacturing firm's supply network with multiple supplier,, IIE transactions, 34 (2002), 663.  doi: 10.1080/07408170208928903.  Google Scholar

[13]

L. Lu, Theory and methodology: A one vendor multi buyer integrated inventory model,, European Journal of Operational Research, 81 (1995), 312.  doi: 10.1016/0377-2217(93)E0253-T.  Google Scholar

[14]

A. K. Misra, Selective discount for supplier buyer coordination using common replenishment epochs,, European Journal of Operational Research, 153 (2004), 751.  doi: 10.1016/S0377-2217(02)00811-1.  Google Scholar

[15]

J. P. Monahan, A quantity discount pricing model to increase vendor profits,, Management Science, 30 (1984), 720.  doi: 10.1287/mnsc.30.6.720.  Google Scholar

[16]

C. L. Munson and M. J. Rosenblatt, Coordinating a three level supply chain with quantity discounts,, IIE Transactions, 33 (2001), 371.  doi: 10.1080/07408170108936836.  Google Scholar

[17]

L. Y. Ouyang, K. S. Wu and C. H. Ho, Integrated vendoruyer cooperative models with stochastic demand in controllable lead time,, International Journal of Production Economics, 92 (2004), 255.  doi: 10.1016/j.ijpe.2003.10.016.  Google Scholar

[18]

M. J. Rosenblatt and H. L. Lee, Improving profitability with quantity discounts under fixed demand,, IIE Transactions, 17 (1985), 388.  doi: 10.1080/07408178508975319.  Google Scholar

[19]

S. M. Ross, "Stochastic Processes,", 2nd edition, (1995).   Google Scholar

[20]

S. P. Sarma, D. Acharya and S. K. Goyal, Buyer vendor coordination models in supply chain management,, European Journal of Operational Research, 175 (2006), 1.  doi: 10.1016/j.ejor.2005.08.006.  Google Scholar

[21]

M. Sharafali and H. C. Co, Some models for understanding the cooperation between the supplier and the buyer,, International Journal of Production Research, 38 (2000), 3425.  doi: 10.1080/002075400422734.  Google Scholar

[22]

E. A. Silver, D.F. Pyke and R. Peterson, "Inventory Management and Production Planning and Scheduling,", 3nd edition, (1998).   Google Scholar

[23]

S. Viswanathan and R. Piplani, Coordinating supply chain inventories through common replenishment epoch,, European Journal of Operational Research, 129 (2001), 277.  doi: 10.1016/S0377-2217(00)00225-3.  Google Scholar

[1]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[2]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[3]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[4]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[5]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[6]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[7]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[10]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[11]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[12]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[13]

Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118

[14]

Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024

[15]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[16]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[17]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[18]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]