• Previous Article
    Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects
  • JIMO Home
  • This Issue
  • Next Article
    Generalized minimax theorems for two set-valued mappings
January  2013, 9(1): 13-30. doi: 10.3934/jimo.2013.9.13

Inventory policies for a partially observed supply capacity model

1. 

Department of Automation, Tsinghua University, Beijing 100084, China, China

Received  April 2011 Revised  April 2012 Published  December 2012

This paper considers a multi-period inventory problem with partially observed supply capacity in the lost sales case. Partially observed supply means that exact available supply in a period is observed only when the order quantity is not less than the supply capacity. Then, these observations are used to update the supply capacity distribution from one period to the next. For this inventory problem with partially observed supply information and random demand, we establish the inventory model according to a known Markov decision process(MDP) space. The existence of an optimal policy for this inventory problem is proved. Finally, some numerical examples considering Poisson distributed demand are given to verify the ability to find an optimal order quantity.
Citation: Qing Yang, Shiji Song, Cheng Wu. Inventory policies for a partially observed supply capacity model. Journal of Industrial & Management Optimization, 2013, 9 (1) : 13-30. doi: 10.3934/jimo.2013.9.13
References:
[1]

A. Bensoussan, M. Cakanyildirim, J. Minjárez-Sosa, A. Royal and S. Sethi, Inventory problems with partially observed demands and lost sales,, Journal of Optimization Theory and Applications, 136 (2008), 321.  doi: 10.1007/s10957-007-9311-0.  Google Scholar

[2]

A. Bensoussan, M. Cakanyildirim, J. A. Minjárez-Sosa, S. P. Sethi and R. X. Shi, Partially observed inventory systems: The case of rain checks,, SIAM Journal on Control and Optimization, 47 (2008), 2490.  doi: 10.1137/070688663.  Google Scholar

[3]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, On the optimal control of partially observed inventory systems,, Comptes Rendus Mathematique, 341 (2005), 419.  doi: 10.1016/j.crma.2005.08.003.  Google Scholar

[4]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, A multiperiod newsvendor problem with partially observed demand,, Mathematics of Operations Research, 32 (2007), 322.  doi: 10.1287/moor.1060.0236.  Google Scholar

[5]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, Partially observed inventory systems: The case of zero-balance walk,, SIAM Journal on Control and Optimization, 46 (2007), 176.  doi: 10.1137/040620321.  Google Scholar

[6]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, Censored newsvendor model revisited with unnormalized probabilities,, Journal of Industrial and Management Optimization, 5 (2009), 391.  doi: 10.3934/jimo.2009.5.391.  Google Scholar

[7]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, A note on "The Censored Newsvendor and the Optimal Acquisition of Information",, Operations Research, 57 (2009), 791.  doi: 10.1287/opre.1080.0609.  Google Scholar

[8]

E. Bayraktar and M. Ludkovski, Inventory management with partially observed nonstationary demand,, Annals of Operations Research, 176 (2010), 37.  doi: 10.1007/s10479-009-0513-8.  Google Scholar

[9]

F. Cheng and S. P. Sethi, Optimality of state-dependent (s,S) policies in inventory models with Markov-modulated demand and lost sales,, Production and Operations Management, 8 (1999), 183.  doi: 10.1111/j.1937-5956.1999.tb00369.x.  Google Scholar

[10]

G. Gallego and L. B. Toktay, All-or-nothing ordering under a capacity constraint,, Operations Research, 52 (2004), 1001.  doi: 10.1287/opre.1040.0153.  Google Scholar

[11]

H. Wang, B. Chen and H. Yan, Optimal inventory decisions in a multiperiod newsvendor problem with partially observed Markovian supply capacities,, European Journal of Operational Research, 51 (2010), 502.  doi: 10.1016/j.ejor.2009.05.042.  Google Scholar

[12]

J. Gallien and L. M. Wein, A smart market for industrial procurement with capacity constraints,, Management Science, 51 (2005), 76.  doi: 10.1287/mnsc.1040.0230.  Google Scholar

[13]

J. T. Treharne and C. R. Sox, Adaptive inventory control for nonstationary demand and partial information,, Management Science, 48 (2002), 607.  doi: 10.1287/mnsc.48.5.607.7807.  Google Scholar

[14]

K. R. Kamath and T. P. M. Pakkala, A bayesian approach to a dynamic inventory model under an unknown demand distribution,, Computers and Operations Research, 29 (2002), 403.   Google Scholar

[15]

K. S. Azoury, Bayes solution to dynamic inventory models under unknown demand distribution,, Management Science, 31 (1985), 1150.  doi: 10.1287/mnsc.31.9.1150.  Google Scholar

[16]

M. Parlar, Y. Wang and Y. Gerchak, A periodic review inventory model with Markovian supply availability,, International Journal of Production Economics, 42 (1995), 131.  doi: 10.1016/0925-5273(95)00115-8.  Google Scholar

[17]

R. Yin and K. Rajaram, Joint pricing and inventory control with a Markovian demand model,, European Journal of Operational Research, 182 (2007), 113.  doi: 10.1016/j.ejor.2006.06.054.  Google Scholar

[18]

S. A. Conrad, Sales data and the estimation of demand,, Operational Research Quarterly (1970-1977), 27 (1976), 1970.   Google Scholar

[19]

S. P. Sethi and F. Cheng, Optimality of (s, S) policies in inventory models with Markovian demand,, Operations Research, 45 (1997), 931.  doi: 10.1287/opre.45.6.931.  Google Scholar

[20]

X. Ding, M. L. Puterman and B. Arnab, The censored newsvendor and the optimal acquisition of information,, Operations Research, 50 (2002), 517.  doi: 10.1287/opre.50.3.517.7752.  Google Scholar

[21]

Y. Aviv and A. Pazgal, A partially observed markov decision process for dynamic pricing,, Management Science, 5 (2005), 1400.  doi: 10.1287/mnsc.1050.0393.  Google Scholar

show all references

References:
[1]

A. Bensoussan, M. Cakanyildirim, J. Minjárez-Sosa, A. Royal and S. Sethi, Inventory problems with partially observed demands and lost sales,, Journal of Optimization Theory and Applications, 136 (2008), 321.  doi: 10.1007/s10957-007-9311-0.  Google Scholar

[2]

A. Bensoussan, M. Cakanyildirim, J. A. Minjárez-Sosa, S. P. Sethi and R. X. Shi, Partially observed inventory systems: The case of rain checks,, SIAM Journal on Control and Optimization, 47 (2008), 2490.  doi: 10.1137/070688663.  Google Scholar

[3]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, On the optimal control of partially observed inventory systems,, Comptes Rendus Mathematique, 341 (2005), 419.  doi: 10.1016/j.crma.2005.08.003.  Google Scholar

[4]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, A multiperiod newsvendor problem with partially observed demand,, Mathematics of Operations Research, 32 (2007), 322.  doi: 10.1287/moor.1060.0236.  Google Scholar

[5]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, Partially observed inventory systems: The case of zero-balance walk,, SIAM Journal on Control and Optimization, 46 (2007), 176.  doi: 10.1137/040620321.  Google Scholar

[6]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, Censored newsvendor model revisited with unnormalized probabilities,, Journal of Industrial and Management Optimization, 5 (2009), 391.  doi: 10.3934/jimo.2009.5.391.  Google Scholar

[7]

A. Bensoussan, M. Cakanyildirim and S. P. Sethi, A note on "The Censored Newsvendor and the Optimal Acquisition of Information",, Operations Research, 57 (2009), 791.  doi: 10.1287/opre.1080.0609.  Google Scholar

[8]

E. Bayraktar and M. Ludkovski, Inventory management with partially observed nonstationary demand,, Annals of Operations Research, 176 (2010), 37.  doi: 10.1007/s10479-009-0513-8.  Google Scholar

[9]

F. Cheng and S. P. Sethi, Optimality of state-dependent (s,S) policies in inventory models with Markov-modulated demand and lost sales,, Production and Operations Management, 8 (1999), 183.  doi: 10.1111/j.1937-5956.1999.tb00369.x.  Google Scholar

[10]

G. Gallego and L. B. Toktay, All-or-nothing ordering under a capacity constraint,, Operations Research, 52 (2004), 1001.  doi: 10.1287/opre.1040.0153.  Google Scholar

[11]

H. Wang, B. Chen and H. Yan, Optimal inventory decisions in a multiperiod newsvendor problem with partially observed Markovian supply capacities,, European Journal of Operational Research, 51 (2010), 502.  doi: 10.1016/j.ejor.2009.05.042.  Google Scholar

[12]

J. Gallien and L. M. Wein, A smart market for industrial procurement with capacity constraints,, Management Science, 51 (2005), 76.  doi: 10.1287/mnsc.1040.0230.  Google Scholar

[13]

J. T. Treharne and C. R. Sox, Adaptive inventory control for nonstationary demand and partial information,, Management Science, 48 (2002), 607.  doi: 10.1287/mnsc.48.5.607.7807.  Google Scholar

[14]

K. R. Kamath and T. P. M. Pakkala, A bayesian approach to a dynamic inventory model under an unknown demand distribution,, Computers and Operations Research, 29 (2002), 403.   Google Scholar

[15]

K. S. Azoury, Bayes solution to dynamic inventory models under unknown demand distribution,, Management Science, 31 (1985), 1150.  doi: 10.1287/mnsc.31.9.1150.  Google Scholar

[16]

M. Parlar, Y. Wang and Y. Gerchak, A periodic review inventory model with Markovian supply availability,, International Journal of Production Economics, 42 (1995), 131.  doi: 10.1016/0925-5273(95)00115-8.  Google Scholar

[17]

R. Yin and K. Rajaram, Joint pricing and inventory control with a Markovian demand model,, European Journal of Operational Research, 182 (2007), 113.  doi: 10.1016/j.ejor.2006.06.054.  Google Scholar

[18]

S. A. Conrad, Sales data and the estimation of demand,, Operational Research Quarterly (1970-1977), 27 (1976), 1970.   Google Scholar

[19]

S. P. Sethi and F. Cheng, Optimality of (s, S) policies in inventory models with Markovian demand,, Operations Research, 45 (1997), 931.  doi: 10.1287/opre.45.6.931.  Google Scholar

[20]

X. Ding, M. L. Puterman and B. Arnab, The censored newsvendor and the optimal acquisition of information,, Operations Research, 50 (2002), 517.  doi: 10.1287/opre.50.3.517.7752.  Google Scholar

[21]

Y. Aviv and A. Pazgal, A partially observed markov decision process for dynamic pricing,, Management Science, 5 (2005), 1400.  doi: 10.1287/mnsc.1050.0393.  Google Scholar

[1]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics & Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[2]

Kody Law, Abhishek Shukla, Andrew Stuart. Analysis of the 3DVAR filter for the partially observed Lorenz'63 model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1061-1078. doi: 10.3934/dcds.2014.34.1061

[3]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[4]

A. Mittal, N. Hemachandra. Learning algorithms for finite horizon constrained Markov decision processes. Journal of Industrial & Management Optimization, 2007, 3 (3) : 429-444. doi: 10.3934/jimo.2007.3.429

[5]

K. F. C. Yiu, L. L. Xie, K. L. Mak. Analysis of bullwhip effect in supply chains with heterogeneous decision models. Journal of Industrial & Management Optimization, 2009, 5 (1) : 81-94. doi: 10.3934/jimo.2009.5.81

[6]

Ellina Grigorieva, Evgenii Khailov. A nonlinear controlled system of differential equations describing the process of production and sales of a consumer good. Conference Publications, 2003, 2003 (Special) : 359-364. doi: 10.3934/proc.2003.2003.359

[7]

Wei Liu, Shiji Song, Ying Qiao, Han Zhao. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1417-1429. doi: 10.3934/jimo.2016080

[8]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019095

[9]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125

[10]

Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial & Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044

[11]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[12]

Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control & Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013

[13]

Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial & Management Optimization, 2012, 8 (2) : 285-297. doi: 10.3934/jimo.2012.8.285

[14]

Harish Garg. Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1501-1519. doi: 10.3934/jimo.2018018

[15]

Qiuli Liu, Xiaolong Zou. A risk minimization problem for finite horizon semi-Markov decision processes with loss rates. Journal of Dynamics & Games, 2018, 5 (2) : 143-163. doi: 10.3934/jdg.2018009

[16]

Bin Dan, Huali Gao, Yang Zhang, Ru Liu, Songxuan Ma. Integrated order acceptance and scheduling decision making in product service supply chain with hard time windows constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 165-182. doi: 10.3934/jimo.2017041

[17]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[18]

Yunan Wu, T. C. Edwin Cheng. Classical duality and existence results for a multi-criteria supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2009, 5 (3) : 615-628. doi: 10.3934/jimo.2009.5.615

[19]

T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269

[20]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019020

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]