Citation: |
[1] |
E. D. Andersen, C. Roos and T. Terlaky, On implementing a primal-dual interior-point method for conic quadratic optimization, Mathematical Programming, 95 (2003), 249-277.doi: 10.1007/s10107-002-0349-3. |
[2] |
S. C. Billups, S. P. Dirkse and M. C. Soares, A comparison of algorithms for large scale mixed complementarity problems, Computational Optimization and Applications, 7 (1997), 3-25.doi: 10.1023/A:1008632215341. |
[3] |
J.-S. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem, Journal of Global Optimization, 36 (2006), 565-580.doi: 10.1007/s10898-006-9027-y. |
[4] |
J-.S. Chen, On some NCP-function based on the generalized Fischer-Burmeister function, Asia-Pacific Journal of Operational Research, 24 (2007), 401-420. |
[5] |
J.-S. Chen and S.-H. Pan, A family of NCP functions and a desent method for the nonlinear complementarity problem, Computational Optimization and Applications, 40 (2008), 389-404.doi: 10.1007/s10589-007-9086-0. |
[6] |
J.-S. Chen and S.-H. Pan, A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for $P_0$-NCPs, Journal of Computational and Applied Mathematics, 220 (2008), 464-479.doi: 10.1016/j.cam.2007.08.020. |
[7] |
J.-S. Chen, H.-T. Gao and S.-H. Pan, An $R$-linearly convergent derivative-free algorithm for the NCPs based on the generalized Fischer-Burmeister merit function, Journal of Computational and Applied Mathematics, 232 (2009), 455-471.doi: 10.1016/j.cam.2009.06.022. |
[8] |
J.-S. Chen, S.-H. Pan and C.-Y. Yang, Numerical comparison of two effective methods for mixed complementarity problems, Journal of Computational and Applied Mathematics, 234 (2010), 667-683.doi: 10.1016/j.cam.2010.01.004. |
[9] |
X. Chen and H. Qi, Cartesian $P$-property and its applications to the semidefinite linear complementarity problem, Mathematical Programming, 106 (2006), 177-201.doi: 10.1007/s10107-005-0601-8. |
[10] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," John Wiley and Sons, New York, 1983. |
[11] |
E. D. Dolan and J. J. More, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213. |
[12] |
F. Facchinei, Structural and stability properties of $P_0$ nonlinear complementarity problems, Mathematics of Operations Research, 23 (1998), 735-745.doi: 10.1287/moor.23.3.735. |
[13] |
F. Facchinei and C. Kanzow, Beyond monotonicity in regularization methods for nonlinear complementarity problems, SIAM Journal on Control and Optimization, 37 (1999), 1150-1161.doi: 10.1137/S0363012997322935. |
[14] |
F. Facchinei and J.-S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems," Springer Verlag, New York, 2003. |
[15] |
F. Facchinei and J. Soares, A new merit function for nonlinear complementarity problems and a related algorithm, SIAM Journal on Optimazation, 7 (1997), 225-247.doi: 10.1137/S1052623494279110. |
[16] |
M. C. Ferris and J.-S. Pang, Engineering and economic applications of complementarity problems, SIAM J. Rev., 39 (1997), 669-713.doi: 10.1137/S0036144595285963. |
[17] |
A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian functions, Mathematical Programming, 76 (1997), 513-532.doi: 10.1007/BF02614396. |
[18] |
P. T. Harker and J.-S. Pang, Finite dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications, Mathematical Programming, 48 (1990), 161-220.doi: 10.1007/BF01582255. |
[19] |
Z.-H. Huang , The global linear and local quadratic convergence of a non-interior continuation algorithm for the LCP, IMA J. Numer. Anal., 25 (2005), 670-684.doi: 10.1093/imanum/dri008. |
[20] |
Z.-H. Huang and W.-Z. Gu, A smoothing-type algorithm for solving linear complementarity problems with strong convergence properties, Appl. Math. Optim., 57 (2008), 17-29.doi: 10.1007/s00245-007-9004-y. |
[21] |
Z.-H. Huang, L. Qi and D. Sun, Sub-quadratic convergence of a smoothing Newton algorithm for the $P_0$- and monotone LCP, Mathematical Programming, 99 (2004), 423-441.doi: 10.1007/s10107-003-0457-8. |
[22] |
H.-Y. Jiang, M. Fukushima and L. Qietal., A trust region method for solving generalized complementarity problems, SIAM Journal on Control and Optimization, 8 (1998), 140-157.doi: 10.1137/S1052623495296541. |
[23] |
C. Kanzow and H. Kleinmichel, A new class of semismooth Newton method for nonlinear complementarity problems, Computational Optimization and Applications, 11 (1998), 227-251.doi: 10.1023/A:1026424918464. |
[24] |
C. Kanzow, N. Yamashita and M. Fukushima, New NCP-functions and their properties, Journal of Optimization Theory and Applications, 94 (1997), 115-135.doi: 10.1023/A:1022659603268. |
[25] |
T. De Luca, F. Facchinei and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Mathematical Programming, 75 (1996), 407-439.doi: 10.1007/BF02592192. |
[26] |
F. J. Luque, Asymptotic convergence analysis of the proximal point algorithm, SIAM Journal on Control and Optimization, 22 (1984), 277-293.doi: 10.1137/0322019. |
[27] |
B. Martinet, Perturbation des méthodes d'opimisation, RAIRO Anal. Numér., 12 (1978), 153-171. |
[28] |
R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM Journal on Control and Optimization, 15 (1997), 957-972. |
[29] |
J.-S. Pang, A posteriori error bounds for the linearly-constrained variational inequality problem, Mathematics of Operations Research, 12 (1987), 474-484.doi: 10.1287/moor.12.3.474. |
[30] |
J.-S. Pang, Complementarity problems, in "Handbook of Global Optimization" (eds. R. Horst and P. Pardalos), Kluwer Academic Publishers, Boston, Massachusetts, (1994), 271-338. |
[31] |
J.-S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM Journal on Optimization, 3 (1993), 443-465.doi: 10.1137/0803021. |
[32] |
L. Qi, A convergence analysis of some algorithms for solving nonsmooth equations, Mathematics of Operations Research, 18 (1993), 227-244.doi: 10.1287/moor.18.1.227. |
[33] |
L. Qi and J. Sun, A nonsmooth version of Newton's method, Mathematical Programming, 58 (1993), 353-367.doi: 10.1007/BF01581275. |
[34] |
S. M. Robinson, Strongly regular generalized equations, Mathematics of Operations Research, 5 (1980), 43-62.doi: 10.1287/moor.5.1.43. |
[35] |
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976), 877-898.doi: 10.1137/0314056. |
[36] |
R. T. Rockafellar and R. J-B. Wets, "Variational Analysis," Springer-Verlag Berlin Heidelberg, 1998.doi: 10.1007/978-3-642-02431-3. |
[37] |
D. Sun and L. Qi, On NCP-functions, Computational Optimization and Applications, 13 (1999), 201-220.doi: 10.1023/A:1008669226453. |
[38] |
D. Sun and J. Sun, Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions, Mathematical Programming, 103 (2005), 575-581.doi: 10.1007/s10107-005-0577-4. |
[39] |
J. Wu and J.-S. Chen, A proximal point algorithm for the monotone second-order cone complementarity problem, Computational Optimization and Applications, 51 (2012), 1037-1063. |
[40] |
N. Yamashita and M. Fukushima, On stationary points of the implicitm Lagrangian for nonlinear complementarity problems, Journal of Optimization Theory and Applications, 84 (1995), 653-663.doi: 10.1007/BF02191990. |
[41] |
N. Yamashita and M. Fukushima, Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems, Mathematical Programming, 76 (1997), 469-491. |
[42] |
N. Yamashita and M. Fukushima, The proximal point algorithm with genuine superlinear convergence for the monotone complementarity problem, SIAM Journal on Optimization, 11 (2000), 364-379.doi: 10.1137/S105262349935949X. |
[43] |
N. Yamashita, J. Imai and M. Fukushima, The proximal point algorithm for the $P_0$ complementarity problem, in "Complementarity: Applications, Algorithms and Extensions" (eds. M. C. Ferris et al.), Kluwer Academic Publisher, (2001), 361-379. |