• Previous Article
    Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system
  • JIMO Home
  • This Issue
  • Next Article
    A perturbation approach for an inverse linear second-order cone programming
January  2013, 9(1): 191-204. doi: 10.3934/jimo.2013.9.191

Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk

1. 

Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes, SA 5095, Australia

2. 

CSIRO Mathematics, Informatics and Statistics, North Ryde, NSW, Australia

Received  November 2011 Revised  June 2012 Published  December 2012

A problem of minimization of $L_1$-penalized conditional value-at-risk (CVaR) is considered. It is shown that there exists a non-negative threshold value of the penalty parameter such that the optimal value of the penalized problem is unbounded if the penalty parameter is less than the threshold value, and it is bounded if the penalty parameter is greater or equal than this value. It is established that the threshold value can be found via the solution of a linear programming problem, and, therefore, readily computable. Theoretical results are illustrated by numerical examples.
Citation: Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191
References:
[1]

S. Alexander, T. F. Coleman and Y. Li, Derivative portfolio hedging based on CVaR,, in, (2004), 339. Google Scholar

[2]

S. Alexander, T. F. Coleman and Y. Li, Minimizing CVaR and VaR for a portfolio of derivatives,, Journal of Banking and Finance, 30 (2006), 583. doi: 10.1016/j.jbankfin.2005.04.012. Google Scholar

[3]

K. A. Boyle, T. F. Coleman and Y. Li, Hedging a portfolio of derivatives by modeling cost,, in, (2003). Google Scholar

[4]

Z. G. Cao, R. D. F. Harris and J. Shen, Hedging and value at risk: A semi-parametric approach,, Journal of Futures Markets, 30 (2010), 780. Google Scholar

[5]

G. B. Dantzig, "Linear Programming and Extensions,", Princeton: Princeton University Press, (1963). Google Scholar

[6]

C. I. Fabian, Handling CVaR objectives and constraints in two-stage stochastic models,, European Journal of Operational Research, 191 (2008), 888. doi: 10.1016/j.ejor.2007.02.052. Google Scholar

[7]

R. D. F. Harris and J. Shen, Hedging and value at risk,, Journal of Futures Markets, 26 (2006), 369. doi: 10.1002/fut.20195. Google Scholar

[8]

D. Huang, S. Zhu, F. J Fabozzi and M. Fukushima, Portfolio selelction under distributional uncertainty: a relative robust CVaR approach,, European Journal of Operational Research, 203 (2010), 185. doi: 10.1016/j.ejor.2009.07.010. Google Scholar

[9]

H. Mausser and D. Rosen, Beyond VaR: From measuring risk to managing risk,, ALGO Research Quarterly, 1 (1998), 5. Google Scholar

[10]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value at risk,, Journal of Risk, 2 (2000), 21. Google Scholar

[11]

R. T. Rockafellar and S. Uryasev, Conditional value at risk for general loss distributions,, Journal of Banking and Finance, 26 (2002), 1443. doi: 10.1016/S0378-4266(02)00271-6. Google Scholar

[12]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model,, Journal of Industrial and Management Optimization, 8 (2012), 343. doi: 10.3934/jimo.2012.8.343. Google Scholar

[13]

T. Tarnopolskaya, J. Tabak and F. R. de Hoog, L-curve for hedging instrument selection in CVaR-minimising portfolio hedging,, in, (2009), 1559. Google Scholar

[14]

N. Topaloglou, H. Vladimirou and S. A. Zenios, CVaR models with selective hedging for international asset allocation,, Journal of Banking and Finance, 26 (2002), 1535. doi: 10.1016/S0378-4266(02)00289-3. Google Scholar

[15]

S. P. Uryasev and R. T. Rockafellar, Conditional value-at-risk: Optimization approach,, Stochastic Optimization: Algorithms and Applications, 54 (2001), 411. Google Scholar

show all references

References:
[1]

S. Alexander, T. F. Coleman and Y. Li, Derivative portfolio hedging based on CVaR,, in, (2004), 339. Google Scholar

[2]

S. Alexander, T. F. Coleman and Y. Li, Minimizing CVaR and VaR for a portfolio of derivatives,, Journal of Banking and Finance, 30 (2006), 583. doi: 10.1016/j.jbankfin.2005.04.012. Google Scholar

[3]

K. A. Boyle, T. F. Coleman and Y. Li, Hedging a portfolio of derivatives by modeling cost,, in, (2003). Google Scholar

[4]

Z. G. Cao, R. D. F. Harris and J. Shen, Hedging and value at risk: A semi-parametric approach,, Journal of Futures Markets, 30 (2010), 780. Google Scholar

[5]

G. B. Dantzig, "Linear Programming and Extensions,", Princeton: Princeton University Press, (1963). Google Scholar

[6]

C. I. Fabian, Handling CVaR objectives and constraints in two-stage stochastic models,, European Journal of Operational Research, 191 (2008), 888. doi: 10.1016/j.ejor.2007.02.052. Google Scholar

[7]

R. D. F. Harris and J. Shen, Hedging and value at risk,, Journal of Futures Markets, 26 (2006), 369. doi: 10.1002/fut.20195. Google Scholar

[8]

D. Huang, S. Zhu, F. J Fabozzi and M. Fukushima, Portfolio selelction under distributional uncertainty: a relative robust CVaR approach,, European Journal of Operational Research, 203 (2010), 185. doi: 10.1016/j.ejor.2009.07.010. Google Scholar

[9]

H. Mausser and D. Rosen, Beyond VaR: From measuring risk to managing risk,, ALGO Research Quarterly, 1 (1998), 5. Google Scholar

[10]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value at risk,, Journal of Risk, 2 (2000), 21. Google Scholar

[11]

R. T. Rockafellar and S. Uryasev, Conditional value at risk for general loss distributions,, Journal of Banking and Finance, 26 (2002), 1443. doi: 10.1016/S0378-4266(02)00271-6. Google Scholar

[12]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model,, Journal of Industrial and Management Optimization, 8 (2012), 343. doi: 10.3934/jimo.2012.8.343. Google Scholar

[13]

T. Tarnopolskaya, J. Tabak and F. R. de Hoog, L-curve for hedging instrument selection in CVaR-minimising portfolio hedging,, in, (2009), 1559. Google Scholar

[14]

N. Topaloglou, H. Vladimirou and S. A. Zenios, CVaR models with selective hedging for international asset allocation,, Journal of Banking and Finance, 26 (2002), 1535. doi: 10.1016/S0378-4266(02)00289-3. Google Scholar

[15]

S. P. Uryasev and R. T. Rockafellar, Conditional value-at-risk: Optimization approach,, Stochastic Optimization: Algorithms and Applications, 54 (2001), 411. Google Scholar

[1]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[2]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[3]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[4]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[5]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[6]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial & Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[7]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019021

[8]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019050

[9]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019071

[10]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2019061

[11]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[12]

Gautier Picot. Energy-minimal transfers in the vicinity of the lagrangian point $L_1$. Conference Publications, 2011, 2011 (Special) : 1196-1205. doi: 10.3934/proc.2011.2011.1196

[13]

Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems & Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257

[14]

Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems & Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199

[15]

Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965

[16]

Zhaohui Guo, Stanley Osher. Template matching via $l_1$ minimization and its application to hyperspectral data. Inverse Problems & Imaging, 2011, 5 (1) : 19-35. doi: 10.3934/ipi.2011.5.19

[17]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

[18]

Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems & Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037

[19]

Manman Li, George Yin. Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model. Journal of Industrial & Management Optimization, 2019, 15 (2) : 517-535. doi: 10.3934/jimo.2018055

[20]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020102

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]