\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Levenberg-Marquardt methods for convex constrained nonlinear equations

Abstract Related Papers Cited by
  • In this paper, both the constrained Levenberg-Marquardt method and the projected Levenberg-Marquardt method are presented for nonlinear equations $F(x)=0$ subject to $x\in X$, where $X$ is a nonempty closed convex set. The Levenberg-Marquardt parameter is taken as $\| F(x_k) \|_2^\delta$ with $\delta\in (0, 2]$. Under the local error bound condition which is weaker than nonsingularity, the methods are shown to have the same convergence rate, which includes not only the convergence results obtained in [12] for $\delta=2$ but also the results given in [7] for unconstrained nonlinear equations.
    Mathematics Subject Classification: 90C30, 65K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Bellavia, M. Macconi and B. Morini, An affine scaling trust-region approach to bound-constrained nonlinear systems, Appl. Numer. Math., 44 (2003), 257-280.doi: 10.1016/S0168-9274(02)00170-8.

    [2]

    S. Bellavia and B. Morini, An interior global method for nonlinear systems with simple bounds, Optim. Methods Software, 20 (2005), 1-22.

    [3]

    H. Dan, N. Yamashita and M. Fukushima, Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions, Optim. Meth. Software, 17 (2002), 605-626.

    [4]

    J. E. Dennis and R. B. Schnabel, "Numerical Methods for Unconstrained Optimization and Nonlinear Equations," Prentice-Hall, Englewood Cliffs, NJ, 1983.

    [5]

    S. P. Dirkse, M. C. Ferris, MCPLIB: a collection of nonlinear mixed complementarity problems, Optim. Meth. Software, 5 (1995), 319-345.doi: 10.1080/10556789508805619.

    [6]

    M. E. El-Hawary, "Optimal Power Flow: Solutions Techniques, Requirements, and Challenges," IEEE Service Center, Piscataway, New Jersey, 1996.

    [7]

    J. Y. Fan and J. Y. Pan, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition, Computational Optimization and Applications, 34 (2006), 47-62.

    [8]

    J. Y. Fan and Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23-39.doi: 10.1007/s00607-004-0083-1.

    [9]

    C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer and C. A. Schweiger, "Handbook of Test Problems in Local and Global Optimization, Nonconvex Optimization and its Applications," Vol. 33, Kluwer Academic Publishers, The Netherlands, 1999.

    [10]

    W. Hock and K. Schittkowski, "Test Examples for Nonlinear Programming Codes," Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer, New York, 1981.

    [11]

    C. Kanzow, An active set-type Newton method for constrained nonlinear systems, in "Complementarity: Applications, Algorithms and Extensions"(M. C. Ferris, O. L. Mangasarian and J. S. Pang eds.), Kluwer Academic, Dordrecht, 2001, pp 179-200.

    [12]

    C. Kanzow, N. Yamashita and M. Fukushima, Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, Journal of Computational and Applied Mathematics, 173 (2005), 321-343.

    [13]

    C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations," SIAM, Philadelphia, 1995.

    [14]

    D. N. Kozakevich, J. M. Martinez and S. A. Santos, Solving nonlinear systems of equations with simple bounds, Comput. Appl. Math., 16 (1997), 215-235.

    [15]

    K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2 (1944), 164-166.

    [16]

    D. W. Marquardt, An algorithm for least-squares estimation of nonlinear inequalities, SIAM J. Appl. Math., 11 (1963), 431-441.

    [17]

    K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361.

    [18]

    K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM Trans. Math. Software, 16 (1990), 143-151.

    [19]

    R. D. C. Monteiro and J. S. Pang, A potential reduction Newton method for constrained equations, SIAM J. Optim., 9 (1999), 729-754.doi: 10.1137/S1052623497318980.

    [20]

    J. J. Moré, The LM algorithm: implementation and theory, in "Lecture Notes in Mathematics 630: Numerical Analysis"(G. A. Watson ed.), Springer-Verlag, Berlin, 1978, pp. 105-116.

    [21]

    J. M. Ortega and W. C. Rheinboldt, "Iterative solution of Nonlinear Equations in Several Variables," Academic Press, New York, 1970.

    [22]

    L. Qi, X. J. Tong and D. H. Li, An active-set projected trust region algorithm for box constrained nonsmooth equations, Journal of Optimization Theories and Applications, 120 (2004), 601-649.

    [23]

    M. Ulbrich, Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems, SIAM J. Optim., 11 (2001), 889-917.

    [24]

    T. Wang, R. D. C. Monteiro and J. S. Pang, An interior point potential reduction method for constrained equations, Math. Programming, 74 (1996), 159-195.

    [25]

    A. J. Wood and B. F. Wollenberg, "Power Generation, Operation, and Control," John Wiley and Sons, New York, NY, 1996.

    [26]

    N. Yamashita and M. Fukushima, On the rate of convergence of the LM method, Computing (Supplement 15), (2001), 237-249.

    [27]

    Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least sqaures, Numerical Algebra, Control and Optimization, 1 (2011), 15-34.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(327) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return