• Previous Article
    Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities
  • JIMO Home
  • This Issue
  • Next Article
    On the Levenberg-Marquardt methods for convex constrained nonlinear equations
January  2013, 9(1): 243-253. doi: 10.3934/jimo.2013.9.243

An outcome space algorithm for minimizing the product of two convex functions over a convex set

1. 

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, N01 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam, Vietnam, Vietnam

Received  June 2011 Revised  July 2012 Published  December 2012

This paper presents an outcome-space outer approximation algorithm for solving the problem of minimizing the product of two convex functions over a compact convex set in $\mathbb{R}^n$. The computational experiences are reported. The proposed algorithm is convergent.
Citation: Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243
References:
[1]

H. P. Benson and G. M. Boger, Multiplicative programming problems: Analysis and efficient point search heuristic,, Journal of Optimization Theory and Applications, 94 (1997), 487.  doi: 10.1023/A:1022600232285.  Google Scholar

[2]

H. P. Benson and G. M. Boger, Outcome-space cutting-plane algorithm for linear multiplicative programming,, Journal of Optimization Theory and Applications, 104 (2000), 301.  doi: 10.1023/A:1004657629105.  Google Scholar

[3]

H. P. Benson, An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming,, Journal of Global Optimization, 15 (1999), 315.  doi: 10.1023/A:1008316429329.  Google Scholar

[4]

Y. Gao, G. Wu and W. Ma, A new global optimization approach for convex multiplicative programming,, Applied Mathematics and Computation, 216 (2010), 1206.  doi: 10.1016/j.amc.2010.02.012.  Google Scholar

[5]

R. Hosrt, N. V. Thoai and J. Devries, On finding the new vertices and redundant constraints in cutting plane algorithms for global optimization,, Operations Research Letters, 7 (1988), 85.  doi: 10.1016/0167-6377(88)90071-5.  Google Scholar

[6]

B. Jaumard, C. Meyer and H. Tuy, Generalized convex multiplicative programming via quasiconcave minimization,, Journal of Global Optimization, 10 (1997), 229.  doi: 10.1023/A:1008203116882.  Google Scholar

[7]

N. T. B. Kim, Finite algorithm for minimizing the product of two linear functions over a polyhedron,, Journal Industrial and Management Optimization, 3 (2007), 481.  doi: 10.3934/jimo.2007.3.481.  Google Scholar

[8]

N. T. B. Kim, N. T. L. Trang and T. T. H. Yen, Outcome-space outer approximation algorithm for linear multiplicative programming,, East West Journal of Mathematics, 9 (2007), 81.   Google Scholar

[9]

H. Konno and T. Kuno, Linear multiplicative programming,, Mathematical Programming, 56 (1992), 51.  doi: 10.1007/BF01580893.  Google Scholar

[10]

H. Konno and T. Kuno, Multiplicative programming problems,, Handbook of Global Optimization, (1995), 369.   Google Scholar

[11]

D. T. Luc, "Theory of Vector Optimization,", Springer-Verlag, (1989).  doi: 10.1007/978-3-642-50280-4.  Google Scholar

[12]

T. Matsui, NP-hardness of linear multiplicative programming and related problems,, Journal of Global Optimization, 9 (1996), 113.  doi: 10.1007/BF00121658.  Google Scholar

[13]

L. D. Muu and B. T. Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set,, Optimization, 24 (1992), 57.  doi: 10.1080/02331939208843779.  Google Scholar

[14]

H. X. Phu, On efficient sets in $\mathbbR^2$,, Vietnam Journal of Mathematics, 33 (2005), 463.   Google Scholar

[15]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).   Google Scholar

[16]

T. V. Thieu, A finite method for globally minimizing concave function over unbounded polyhedral convex sets and its applications,, Acta Mathematica Hungarica, 52 (1988), 21.  doi: 10.1007/BF01952475.  Google Scholar

[17]

N. V. Thoai, A global optimization approach for solving the convex multiplicative programming problem,, Journal of Global Optimization, 1 (1991), 341.  doi: 10.1007/BF00130830.  Google Scholar

[18]

P. L. Yu, "Multiple-Criteria Decision Making,", Plenum Press, (1985).  doi: 10.1007/978-1-4684-8395-6.  Google Scholar

show all references

References:
[1]

H. P. Benson and G. M. Boger, Multiplicative programming problems: Analysis and efficient point search heuristic,, Journal of Optimization Theory and Applications, 94 (1997), 487.  doi: 10.1023/A:1022600232285.  Google Scholar

[2]

H. P. Benson and G. M. Boger, Outcome-space cutting-plane algorithm for linear multiplicative programming,, Journal of Optimization Theory and Applications, 104 (2000), 301.  doi: 10.1023/A:1004657629105.  Google Scholar

[3]

H. P. Benson, An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming,, Journal of Global Optimization, 15 (1999), 315.  doi: 10.1023/A:1008316429329.  Google Scholar

[4]

Y. Gao, G. Wu and W. Ma, A new global optimization approach for convex multiplicative programming,, Applied Mathematics and Computation, 216 (2010), 1206.  doi: 10.1016/j.amc.2010.02.012.  Google Scholar

[5]

R. Hosrt, N. V. Thoai and J. Devries, On finding the new vertices and redundant constraints in cutting plane algorithms for global optimization,, Operations Research Letters, 7 (1988), 85.  doi: 10.1016/0167-6377(88)90071-5.  Google Scholar

[6]

B. Jaumard, C. Meyer and H. Tuy, Generalized convex multiplicative programming via quasiconcave minimization,, Journal of Global Optimization, 10 (1997), 229.  doi: 10.1023/A:1008203116882.  Google Scholar

[7]

N. T. B. Kim, Finite algorithm for minimizing the product of two linear functions over a polyhedron,, Journal Industrial and Management Optimization, 3 (2007), 481.  doi: 10.3934/jimo.2007.3.481.  Google Scholar

[8]

N. T. B. Kim, N. T. L. Trang and T. T. H. Yen, Outcome-space outer approximation algorithm for linear multiplicative programming,, East West Journal of Mathematics, 9 (2007), 81.   Google Scholar

[9]

H. Konno and T. Kuno, Linear multiplicative programming,, Mathematical Programming, 56 (1992), 51.  doi: 10.1007/BF01580893.  Google Scholar

[10]

H. Konno and T. Kuno, Multiplicative programming problems,, Handbook of Global Optimization, (1995), 369.   Google Scholar

[11]

D. T. Luc, "Theory of Vector Optimization,", Springer-Verlag, (1989).  doi: 10.1007/978-3-642-50280-4.  Google Scholar

[12]

T. Matsui, NP-hardness of linear multiplicative programming and related problems,, Journal of Global Optimization, 9 (1996), 113.  doi: 10.1007/BF00121658.  Google Scholar

[13]

L. D. Muu and B. T. Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set,, Optimization, 24 (1992), 57.  doi: 10.1080/02331939208843779.  Google Scholar

[14]

H. X. Phu, On efficient sets in $\mathbbR^2$,, Vietnam Journal of Mathematics, 33 (2005), 463.   Google Scholar

[15]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).   Google Scholar

[16]

T. V. Thieu, A finite method for globally minimizing concave function over unbounded polyhedral convex sets and its applications,, Acta Mathematica Hungarica, 52 (1988), 21.  doi: 10.1007/BF01952475.  Google Scholar

[17]

N. V. Thoai, A global optimization approach for solving the convex multiplicative programming problem,, Journal of Global Optimization, 1 (1991), 341.  doi: 10.1007/BF00130830.  Google Scholar

[18]

P. L. Yu, "Multiple-Criteria Decision Making,", Plenum Press, (1985).  doi: 10.1007/978-1-4684-8395-6.  Google Scholar

[1]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[5]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[6]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[7]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[8]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[9]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[10]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[11]

Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021010

[12]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[13]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[16]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[17]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[18]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[19]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[20]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (1)

[Back to Top]