\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An outcome space algorithm for minimizing the product of two convex functions over a convex set

Abstract / Introduction Related Papers Cited by
  • This paper presents an outcome-space outer approximation algorithm for solving the problem of minimizing the product of two convex functions over a compact convex set in $\mathbb{R}^n$. The computational experiences are reported. The proposed algorithm is convergent.
    Mathematics Subject Classification: Primary: 90C29; Secondary: 90C26.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. P. Benson and G. M. Boger, Multiplicative programming problems: Analysis and efficient point search heuristic, Journal of Optimization Theory and Applications, 94 (1997), 487-510.doi: 10.1023/A:1022600232285.

    [2]

    H. P. Benson and G. M. Boger, Outcome-space cutting-plane algorithm for linear multiplicative programming, Journal of Optimization Theory and Applications, 104 (2000), 301-322.doi: 10.1023/A:1004657629105.

    [3]

    H. P. Benson, An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming, Journal of Global Optimization, 15 (1999), 315-342.doi: 10.1023/A:1008316429329.

    [4]

    Y. Gao, G. Wu and W. Ma, A new global optimization approach for convex multiplicative programming, Applied Mathematics and Computation, 216 (2010), 1206-1218.doi: 10.1016/j.amc.2010.02.012.

    [5]

    R. Hosrt, N. V. Thoai and J. Devries, On finding the new vertices and redundant constraints in cutting plane algorithms for global optimization, Operations Research Letters, 7 (1988), 85-90.doi: 10.1016/0167-6377(88)90071-5.

    [6]

    B. Jaumard, C. Meyer and H. Tuy, Generalized convex multiplicative programming via quasiconcave minimization, Journal of Global Optimization, 10 (1997), 229-256.doi: 10.1023/A:1008203116882.

    [7]

    N. T. B. Kim, Finite algorithm for minimizing the product of two linear functions over a polyhedron, Journal Industrial and Management Optimization, 3 (2007), 481-487.doi: 10.3934/jimo.2007.3.481.

    [8]

    N. T. B. Kim, N. T. L. Trang and T. T. H. Yen, Outcome-space outer approximation algorithm for linear multiplicative programming, East West Journal of Mathematics, 9 (2007), 81-98.

    [9]

    H. Konno and T. Kuno, Linear multiplicative programming, Mathematical Programming, 56 (1992), 51-64.doi: 10.1007/BF01580893.

    [10]

    H. Konno and T. Kuno, Multiplicative programming problems, Handbook of Global Optimization, (Edited by R. Horst and P. M. Pardalos), Kluwer Academic Publishers, Dordrecht, Netherlands, (1995), 369-405.

    [11]

    D. T. Luc, "Theory of Vector Optimization," Springer-Verlag, Berlin, Germany, 1989.doi: 10.1007/978-3-642-50280-4.

    [12]

    T. Matsui, NP-hardness of linear multiplicative programming and related problems, Journal of Global Optimization, 9 (1996), 113-119.doi: 10.1007/BF00121658.

    [13]

    L. D. Muu and B. T. Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set, Optimization, 24 (1992), 57-62.doi: 10.1080/02331939208843779.

    [14]

    H. X. Phu, On efficient sets in $\mathbbR^2$, Vietnam Journal of Mathematics, 33 (2005), 463-468.

    [15]

    R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1970.

    [16]

    T. V. Thieu, A finite method for globally minimizing concave function over unbounded polyhedral convex sets and its applications, Acta Mathematica Hungarica, 52 (1988), 21-36.doi: 10.1007/BF01952475.

    [17]

    N. V. Thoai, A global optimization approach for solving the convex multiplicative programming problem, Journal of Global Optimization, 1 (1991), 341-357.doi: 10.1007/BF00130830.

    [18]

    P. L. Yu, "Multiple-Criteria Decision Making," Plenum Press, New York and London, 1985.doi: 10.1007/978-1-4684-8395-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return