April  2013, 9(2): 275-290. doi: 10.3934/jimo.2013.9.275

Electricity spot market with transmission losses

1. 

Lab. PROMES, UPR 8521, Université de Perpignan, Perpignan, France, France

2. 

Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile

Received  May 2011 Revised  April 2012 Published  February 2013

In order to study deregulated electricity spot markets, various models have been proposed. Most of them correspond to a, so-called, multi-leader-follower game in which an Independent System Operator (ISO) plays a central role. Our aim in this paper is to consider quadratic bid functions together with the transmission losses in the multi-leader-follower game. Under some reasonable assumptions we deduce qualitative properties for the ISO's problem. In the two islands type market, the explicit formulae for the optimal solutions of the ISO's problem are obtained and we show the existence of an equilibrium.
Citation: Didier Aussel, Rafael Correa, Matthieu Marechal. Electricity spot market with transmission losses. Journal of Industrial & Management Optimization, 2013, 9 (2) : 275-290. doi: 10.3934/jimo.2013.9.275
References:
[1]

E. J. Anderson and H. Xu, Supply function equilibrium in electricity spot markets with contracts and price caps,, J. Opt. Theory Appl., 124 (2005), 257. doi: 10.1007/s10957-004-0924-2. Google Scholar

[2]

R. Baldick, Electricity market equilibrium models: The effect of paramatrization,, IEEE Transactions on Power Systems, 17 (2002), 1170. Google Scholar

[3]

R. Baldick and W. Hogan, Capacity constrained supply function equilibriam models of electricity markets: Stability, nondecreasing constraints, and function space iterations,, Paper PWP-089, (2001). Google Scholar

[4]

M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel programming problem,, J. Global Optim., 33 (2005), 465. doi: 10.1007/s10898-004-1939-9. Google Scholar

[5]

F. Bolle, Supply function equilibria and the danger of tacit collution: The case of spot markets for electricity,, Energy Economics, 14 (1992), 94. Google Scholar

[6]

J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour,, SIAM Rev., 40 (1998), 228. doi: 10.1137/S0036144596302644. Google Scholar

[7]

C. J. Day, B. F. Hobbs and J.-S. Pang, Oligopolistic competition in power networks: A conjectured supply function approach,, IEEE Transactions on Power Systems, 17 (2002), 597. Google Scholar

[8]

A. Downward, G. Zakeri and A. B. Philpott, On Cournot equilibria in electricity transmission networks,, Oper. Res., 58 (2010), 1194. doi: 10.1287/opre.1100.0830. Google Scholar

[9]

J. Eichberger, "Game Theory for Economists,", Academic Press, (1993). Google Scholar

[10]

J. F. Escobar and A. Jofré, Equilibrium analysis for a network model,, in, 81 (2006), 63. doi: 10.1007/0-387-28654-3_3. Google Scholar

[11]

J. F. Escobar and A. Jofré, Monopolistic competition in electricity networks with resistance losses,, Econom. Theory, 44 (2010), 101. doi: 10.1007/s00199-009-0460-2. Google Scholar

[12]

M. Fukushima and J.-S. Pang, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games,, Comput. Manag. Sci., 2 (2005), 21. doi: 10.1007/s10287-004-0010-0. Google Scholar

[13]

R. J. Green and D. M. Newbery, Competition in the British electricity spot market,, J. of Political Economy, 100 (1992), 929. Google Scholar

[14]

R. Henrion, J. Outrata and T. Surowiec, Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model,, preprint, (2010). Google Scholar

[15]

B. F. Hobbs and J.-S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, IEEE Trans. Power Systems, 15 (2000), 638. Google Scholar

[16]

B. F. Hobbs and J.-S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures,, Math. Program. Ser. B, 101 (2004), 57. doi: 10.1007/s10107-004-0537-4. Google Scholar

[17]

B. F. Hobbs and J.-S. Pang, Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints,, Oper. Research, 55 (2007), 113. doi: 10.1287/opre.1060.0342. Google Scholar

[18]

X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with locational prices,, Oper. Res., 55 (2007), 809. doi: 10.1287/opre.1070.0431. Google Scholar

[19]

P. D. Klemperer and M. A. Meyer, Supply function equilibria in oligopoly under uncertainty,, Econometrica, 57 (1989), 1243. doi: 10.2307/1913707. Google Scholar

[20]

R. B. Myerson, "Game Theory. Analysis of Conflict,", Harvard University Press, (1991). Google Scholar

[21]

N. K. Nair and L. X. Zhang, SmartGrid: Future networks for New Zealand power systems incorporating distributed generation,, Energy Policy, 37 (2009), 3418. Google Scholar

[22]

V. Nanduri and D. K. Das, A survey of critical research areas in the energy segment of restructured electric power markets,, Electrical Power and Energy Systems, 31 (2009), 181. Google Scholar

[23]

A. Rudkevich, Supply Function Equilibrium in Power Markets: Learning All the Way,, TCA Technical Paper, (1999), 1299. Google Scholar

[24]

B. Willems, I. Rumiantseva and H. Weigt, Cournot versus Supply Functions: What does the data tell us?,, Energy Economics, 31 (2009), 38. Google Scholar

show all references

References:
[1]

E. J. Anderson and H. Xu, Supply function equilibrium in electricity spot markets with contracts and price caps,, J. Opt. Theory Appl., 124 (2005), 257. doi: 10.1007/s10957-004-0924-2. Google Scholar

[2]

R. Baldick, Electricity market equilibrium models: The effect of paramatrization,, IEEE Transactions on Power Systems, 17 (2002), 1170. Google Scholar

[3]

R. Baldick and W. Hogan, Capacity constrained supply function equilibriam models of electricity markets: Stability, nondecreasing constraints, and function space iterations,, Paper PWP-089, (2001). Google Scholar

[4]

M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel programming problem,, J. Global Optim., 33 (2005), 465. doi: 10.1007/s10898-004-1939-9. Google Scholar

[5]

F. Bolle, Supply function equilibria and the danger of tacit collution: The case of spot markets for electricity,, Energy Economics, 14 (1992), 94. Google Scholar

[6]

J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour,, SIAM Rev., 40 (1998), 228. doi: 10.1137/S0036144596302644. Google Scholar

[7]

C. J. Day, B. F. Hobbs and J.-S. Pang, Oligopolistic competition in power networks: A conjectured supply function approach,, IEEE Transactions on Power Systems, 17 (2002), 597. Google Scholar

[8]

A. Downward, G. Zakeri and A. B. Philpott, On Cournot equilibria in electricity transmission networks,, Oper. Res., 58 (2010), 1194. doi: 10.1287/opre.1100.0830. Google Scholar

[9]

J. Eichberger, "Game Theory for Economists,", Academic Press, (1993). Google Scholar

[10]

J. F. Escobar and A. Jofré, Equilibrium analysis for a network model,, in, 81 (2006), 63. doi: 10.1007/0-387-28654-3_3. Google Scholar

[11]

J. F. Escobar and A. Jofré, Monopolistic competition in electricity networks with resistance losses,, Econom. Theory, 44 (2010), 101. doi: 10.1007/s00199-009-0460-2. Google Scholar

[12]

M. Fukushima and J.-S. Pang, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games,, Comput. Manag. Sci., 2 (2005), 21. doi: 10.1007/s10287-004-0010-0. Google Scholar

[13]

R. J. Green and D. M. Newbery, Competition in the British electricity spot market,, J. of Political Economy, 100 (1992), 929. Google Scholar

[14]

R. Henrion, J. Outrata and T. Surowiec, Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model,, preprint, (2010). Google Scholar

[15]

B. F. Hobbs and J.-S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, IEEE Trans. Power Systems, 15 (2000), 638. Google Scholar

[16]

B. F. Hobbs and J.-S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures,, Math. Program. Ser. B, 101 (2004), 57. doi: 10.1007/s10107-004-0537-4. Google Scholar

[17]

B. F. Hobbs and J.-S. Pang, Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints,, Oper. Research, 55 (2007), 113. doi: 10.1287/opre.1060.0342. Google Scholar

[18]

X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with locational prices,, Oper. Res., 55 (2007), 809. doi: 10.1287/opre.1070.0431. Google Scholar

[19]

P. D. Klemperer and M. A. Meyer, Supply function equilibria in oligopoly under uncertainty,, Econometrica, 57 (1989), 1243. doi: 10.2307/1913707. Google Scholar

[20]

R. B. Myerson, "Game Theory. Analysis of Conflict,", Harvard University Press, (1991). Google Scholar

[21]

N. K. Nair and L. X. Zhang, SmartGrid: Future networks for New Zealand power systems incorporating distributed generation,, Energy Policy, 37 (2009), 3418. Google Scholar

[22]

V. Nanduri and D. K. Das, A survey of critical research areas in the energy segment of restructured electric power markets,, Electrical Power and Energy Systems, 31 (2009), 181. Google Scholar

[23]

A. Rudkevich, Supply Function Equilibrium in Power Markets: Learning All the Way,, TCA Technical Paper, (1999), 1299. Google Scholar

[24]

B. Willems, I. Rumiantseva and H. Weigt, Cournot versus Supply Functions: What does the data tell us?,, Energy Economics, 31 (2009), 38. Google Scholar

[1]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[2]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[3]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[4]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[5]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1

[6]

Limin Wen, Xianyi Wu, Xiaobing Zhao. The credibility premiums under generalized weighted loss functions. Journal of Industrial & Management Optimization, 2009, 5 (4) : 893-910. doi: 10.3934/jimo.2009.5.893

[7]

Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1

[8]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[9]

Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019060

[10]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[11]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[12]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial & Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[13]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[14]

Yu Han, Nan-Jing Huang. Some characterizations of the approximate solutions to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1135-1151. doi: 10.3934/jimo.2016.12.1135

[15]

L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183

[16]

Qilin Wang, Shengji Li. Semicontinuity of approximate solution mappings to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1303-1309. doi: 10.3934/jimo.2016.12.1303

[17]

Kenji Kimura, Jen-Chih Yao. Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 167-181. doi: 10.3934/jimo.2008.4.167

[18]

Xin Zuo, Chun-Rong Chen, Hong-Zhi Wei. Solution continuity of parametric generalized vector equilibrium problems with strictly pseudomonotone mappings. Journal of Industrial & Management Optimization, 2017, 13 (1) : 477-488. doi: 10.3934/jimo.2016027

[19]

M. H. Li, S. J. Li, W. Y. Zhang. Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 683-696. doi: 10.3934/jimo.2009.5.683

[20]

Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019034

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]