
Previous Article
Analysis on Buyers' cooperative strategy under groupbuying price mechanism
 JIMO Home
 This Issue
 Next Article
Electricity spot market with transmission losses
1.  Lab. PROMES, UPR 8521, Université de Perpignan, Perpignan, France, France 
2.  Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile 
References:
[1] 
E. J. Anderson and H. Xu, Supply function equilibrium in electricity spot markets with contracts and price caps, J. Opt. Theory Appl., 124 (2005), 257283. doi: 10.1007/s1095700409242. 
[2] 
R. Baldick, Electricity market equilibrium models: The effect of paramatrization, IEEE Transactions on Power Systems, 17 (2002), 11701176. 
[3] 
R. Baldick and W. Hogan, Capacity constrained supply function equilibriam models of electricity markets: Stability, nondecreasing constraints, and function space iterations, Paper PWP089, Univ. California Energy Institute, 2001. 
[4] 
M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel programming problem, J. Global Optim., 33 (2005), 465475. doi: 10.1007/s1089800419399. 
[5] 
F. Bolle, Supply function equilibria and the danger of tacit collution: The case of spot markets for electricity, Energy Economics, 14 (1992), 94102. 
[6] 
J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour, SIAM Rev., 40 (1998), 228264. doi: 10.1137/S0036144596302644. 
[7] 
C. J. Day, B. F. Hobbs and J.S. Pang, Oligopolistic competition in power networks: A conjectured supply function approach, IEEE Transactions on Power Systems, 17 (2002), 597607. 
[8] 
A. Downward, G. Zakeri and A. B. Philpott, On Cournot equilibria in electricity transmission networks, Oper. Res., 58 (2010), 11941209. doi: 10.1287/opre.1100.0830. 
[9] 
J. Eichberger, "Game Theory for Economists," Academic Press, Inc., San Diego, CA, 1993. 
[10] 
J. F. Escobar and A. Jofré, Equilibrium analysis for a network model, in "Robust OptimizationDirected Design," Nonconvex Optim. Appl., 81, Springer, New York, (2006), 6372. doi: 10.1007/0387286543_3. 
[11] 
J. F. Escobar and A. Jofré, Monopolistic competition in electricity networks with resistance losses, Econom. Theory, 44 (2010), 101121. doi: 10.1007/s0019900904602. 
[12] 
M. Fukushima and J.S. Pang, Quasivariational inequalities, generalized Nash equilibria, and multileaderfollower games, Comput. Manag. Sci., 2 (2005), 2156; [Erratum: Comput. Manag. Sci., 6 (2009), 373375]. doi: 10.1007/s1028700400100. 
[13] 
R. J. Green and D. M. Newbery, Competition in the British electricity spot market, J. of Political Economy, 100 (1992), 929953. 
[14] 
R. Henrion, J. Outrata and T. Surowiec, Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model, preprint, 2010. 
[15] 
B. F. Hobbs and J.S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach, IEEE Trans. Power Systems, 15 (2000), 638645. 
[16] 
B. F. Hobbs and J.S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures, Math. Program. Ser. B, 101 (2004), 5794. doi: 10.1007/s1010700405374. 
[17] 
B. F. Hobbs and J.S. Pang, NashCournot equilibria in electric power markets with piecewise linear demand functions and joint constraints, Oper. Research, 55 (2007), 113127. doi: 10.1287/opre.1060.0342. 
[18] 
X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with locational prices, Oper. Res., 55 (2007), 809827. doi: 10.1287/opre.1070.0431. 
[19] 
P. D. Klemperer and M. A. Meyer, Supply function equilibria in oligopoly under uncertainty, Econometrica, 57 (1989), 12431277. doi: 10.2307/1913707. 
[20] 
R. B. Myerson, "Game Theory. Analysis of Conflict," Harvard University Press, Cambridge, MA, 1991. 
[21] 
N. K. Nair and L. X. Zhang, SmartGrid: Future networks for New Zealand power systems incorporating distributed generation, Energy Policy, 37 (2009), 34183427. 
[22] 
V. Nanduri and D. K. Das, A survey of critical research areas in the energy segment of restructured electric power markets, Electrical Power and Energy Systems, 31 (2009), 181191. 
[23] 
A. Rudkevich, Supply Function Equilibrium in Power Markets: Learning All the Way, TCA Technical Paper, (1999), 12991702. 
[24] 
B. Willems, I. Rumiantseva and H. Weigt, Cournot versus Supply Functions: What does the data tell us?, Energy Economics, 31 (2009), 3847. 
show all references
References:
[1] 
E. J. Anderson and H. Xu, Supply function equilibrium in electricity spot markets with contracts and price caps, J. Opt. Theory Appl., 124 (2005), 257283. doi: 10.1007/s1095700409242. 
[2] 
R. Baldick, Electricity market equilibrium models: The effect of paramatrization, IEEE Transactions on Power Systems, 17 (2002), 11701176. 
[3] 
R. Baldick and W. Hogan, Capacity constrained supply function equilibriam models of electricity markets: Stability, nondecreasing constraints, and function space iterations, Paper PWP089, Univ. California Energy Institute, 2001. 
[4] 
M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel programming problem, J. Global Optim., 33 (2005), 465475. doi: 10.1007/s1089800419399. 
[5] 
F. Bolle, Supply function equilibria and the danger of tacit collution: The case of spot markets for electricity, Energy Economics, 14 (1992), 94102. 
[6] 
J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour, SIAM Rev., 40 (1998), 228264. doi: 10.1137/S0036144596302644. 
[7] 
C. J. Day, B. F. Hobbs and J.S. Pang, Oligopolistic competition in power networks: A conjectured supply function approach, IEEE Transactions on Power Systems, 17 (2002), 597607. 
[8] 
A. Downward, G. Zakeri and A. B. Philpott, On Cournot equilibria in electricity transmission networks, Oper. Res., 58 (2010), 11941209. doi: 10.1287/opre.1100.0830. 
[9] 
J. Eichberger, "Game Theory for Economists," Academic Press, Inc., San Diego, CA, 1993. 
[10] 
J. F. Escobar and A. Jofré, Equilibrium analysis for a network model, in "Robust OptimizationDirected Design," Nonconvex Optim. Appl., 81, Springer, New York, (2006), 6372. doi: 10.1007/0387286543_3. 
[11] 
J. F. Escobar and A. Jofré, Monopolistic competition in electricity networks with resistance losses, Econom. Theory, 44 (2010), 101121. doi: 10.1007/s0019900904602. 
[12] 
M. Fukushima and J.S. Pang, Quasivariational inequalities, generalized Nash equilibria, and multileaderfollower games, Comput. Manag. Sci., 2 (2005), 2156; [Erratum: Comput. Manag. Sci., 6 (2009), 373375]. doi: 10.1007/s1028700400100. 
[13] 
R. J. Green and D. M. Newbery, Competition in the British electricity spot market, J. of Political Economy, 100 (1992), 929953. 
[14] 
R. Henrion, J. Outrata and T. Surowiec, Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model, preprint, 2010. 
[15] 
B. F. Hobbs and J.S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach, IEEE Trans. Power Systems, 15 (2000), 638645. 
[16] 
B. F. Hobbs and J.S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures, Math. Program. Ser. B, 101 (2004), 5794. doi: 10.1007/s1010700405374. 
[17] 
B. F. Hobbs and J.S. Pang, NashCournot equilibria in electric power markets with piecewise linear demand functions and joint constraints, Oper. Research, 55 (2007), 113127. doi: 10.1287/opre.1060.0342. 
[18] 
X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with locational prices, Oper. Res., 55 (2007), 809827. doi: 10.1287/opre.1070.0431. 
[19] 
P. D. Klemperer and M. A. Meyer, Supply function equilibria in oligopoly under uncertainty, Econometrica, 57 (1989), 12431277. doi: 10.2307/1913707. 
[20] 
R. B. Myerson, "Game Theory. Analysis of Conflict," Harvard University Press, Cambridge, MA, 1991. 
[21] 
N. K. Nair and L. X. Zhang, SmartGrid: Future networks for New Zealand power systems incorporating distributed generation, Energy Policy, 37 (2009), 34183427. 
[22] 
V. Nanduri and D. K. Das, A survey of critical research areas in the energy segment of restructured electric power markets, Electrical Power and Energy Systems, 31 (2009), 181191. 
[23] 
A. Rudkevich, Supply Function Equilibrium in Power Markets: Learning All the Way, TCA Technical Paper, (1999), 12991702. 
[24] 
B. Willems, I. Rumiantseva and H. Weigt, Cournot versus Supply Functions: What does the data tell us?, Energy Economics, 31 (2009), 3847. 
[1] 
Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2014, 10 (4) : 10911108. doi: 10.3934/jimo.2014.10.1091 
[2] 
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2012, 8 (1) : 5165. doi: 10.3934/jimo.2012.8.51 
[3] 
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 209220. doi: 10.3934/naco.2020022 
[4] 
Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 17951807. doi: 10.3934/jimo.2018123 
[5] 
Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 115. doi: 10.3934/jimo.2016.12.1 
[6] 
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with secondorder cone constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 118. doi: 10.3934/naco.2012.2.1 
[7] 
Zhenzhen Wang, Hao Dong, Zhehao Huang. Carbon spot prices in equilibrium frameworks associated with climate change. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021214 
[8] 
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategicform games. Journal of Dynamics and Games, 2020, 7 (2) : 97104. doi: 10.3934/jdg.2020006 
[9] 
Limin Wen, Xianyi Wu, Xiaobing Zhao. The credibility premiums under generalized weighted loss functions. Journal of Industrial and Management Optimization, 2009, 5 (4) : 893910. doi: 10.3934/jimo.2009.5.893 
[10] 
Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics and Games, 2015, 2 (1) : 132. doi: 10.3934/jdg.2015.2.1 
[11] 
Dean A. Carlson. Finding openloop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153163. doi: 10.3934/proc.2005.2005.153 
[12] 
Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial and Management Optimization, 2020, 16 (5) : 24072424. doi: 10.3934/jimo.2019060 
[13] 
Xiaolin Xu, Xiaoqiang Cai. Price and deliverytime competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial and Management Optimization, 2008, 4 (4) : 843859. doi: 10.3934/jimo.2008.4.843 
[14] 
Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzerosum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control and Related Fields, 2017, 7 (2) : 289304. doi: 10.3934/mcrf.2017010 
[15] 
Bin Zhou, Hailin Sun. Twostage stochastic variational inequalities for CournotNash equilibrium with riskaverse players under uncertainty. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 521535. doi: 10.3934/naco.2020049 
[16] 
Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial and Management Optimization, 2008, 4 (3) : 617630. doi: 10.3934/jimo.2008.4.617 
[17] 
Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial and Management Optimization, 2014, 10 (4) : 12251234. doi: 10.3934/jimo.2014.10.1225 
[18] 
Yu Han, NanJing Huang. Some characterizations of the approximate solutions to generalized vector equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (3) : 11351151. doi: 10.3934/jimo.2016.12.1135 
[19] 
L. Bakker. The KatokSpatzier conjecture, generalized symmetries, and equilibriumfree flows. Communications on Pure and Applied Analysis, 2013, 12 (3) : 11831200. doi: 10.3934/cpaa.2013.12.1183 
[20] 
Qilin Wang, Shengji Li. Semicontinuity of approximate solution mappings to generalized vector equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (4) : 13031309. doi: 10.3934/jimo.2016.12.1303 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]