-
Previous Article
Analysis on Buyers' cooperative strategy under group-buying price mechanism
- JIMO Home
- This Issue
- Next Article
Electricity spot market with transmission losses
1. | Lab. PROMES, UPR 8521, Université de Perpignan, Perpignan, France, France |
2. | Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile |
References:
[1] |
E. J. Anderson and H. Xu, Supply function equilibrium in electricity spot markets with contracts and price caps,, J. Opt. Theory Appl., 124 (2005), 257.
doi: 10.1007/s10957-004-0924-2. |
[2] |
R. Baldick, Electricity market equilibrium models: The effect of paramatrization,, IEEE Transactions on Power Systems, 17 (2002), 1170. Google Scholar |
[3] |
R. Baldick and W. Hogan, Capacity constrained supply function equilibriam models of electricity markets: Stability, nondecreasing constraints, and function space iterations,, Paper PWP-089, (2001). Google Scholar |
[4] |
M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel programming problem,, J. Global Optim., 33 (2005), 465.
doi: 10.1007/s10898-004-1939-9. |
[5] |
F. Bolle, Supply function equilibria and the danger of tacit collution: The case of spot markets for electricity,, Energy Economics, 14 (1992), 94. Google Scholar |
[6] |
J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour,, SIAM Rev., 40 (1998), 228.
doi: 10.1137/S0036144596302644. |
[7] |
C. J. Day, B. F. Hobbs and J.-S. Pang, Oligopolistic competition in power networks: A conjectured supply function approach,, IEEE Transactions on Power Systems, 17 (2002), 597. Google Scholar |
[8] |
A. Downward, G. Zakeri and A. B. Philpott, On Cournot equilibria in electricity transmission networks,, Oper. Res., 58 (2010), 1194.
doi: 10.1287/opre.1100.0830. |
[9] |
J. Eichberger, "Game Theory for Economists,", Academic Press, (1993).
|
[10] |
J. F. Escobar and A. Jofré, Equilibrium analysis for a network model,, in, 81 (2006), 63.
doi: 10.1007/0-387-28654-3_3. |
[11] |
J. F. Escobar and A. Jofré, Monopolistic competition in electricity networks with resistance losses,, Econom. Theory, 44 (2010), 101.
doi: 10.1007/s00199-009-0460-2. |
[12] |
M. Fukushima and J.-S. Pang, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games,, Comput. Manag. Sci., 2 (2005), 21.
doi: 10.1007/s10287-004-0010-0. |
[13] |
R. J. Green and D. M. Newbery, Competition in the British electricity spot market,, J. of Political Economy, 100 (1992), 929. Google Scholar |
[14] |
R. Henrion, J. Outrata and T. Surowiec, Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model,, preprint, (2010). Google Scholar |
[15] |
B. F. Hobbs and J.-S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, IEEE Trans. Power Systems, 15 (2000), 638. Google Scholar |
[16] |
B. F. Hobbs and J.-S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures,, Math. Program. Ser. B, 101 (2004), 57.
doi: 10.1007/s10107-004-0537-4. |
[17] |
B. F. Hobbs and J.-S. Pang, Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints,, Oper. Research, 55 (2007), 113.
doi: 10.1287/opre.1060.0342. |
[18] |
X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with locational prices,, Oper. Res., 55 (2007), 809.
doi: 10.1287/opre.1070.0431. |
[19] |
P. D. Klemperer and M. A. Meyer, Supply function equilibria in oligopoly under uncertainty,, Econometrica, 57 (1989), 1243.
doi: 10.2307/1913707. |
[20] |
R. B. Myerson, "Game Theory. Analysis of Conflict,", Harvard University Press, (1991).
|
[21] |
N. K. Nair and L. X. Zhang, SmartGrid: Future networks for New Zealand power systems incorporating distributed generation,, Energy Policy, 37 (2009), 3418. Google Scholar |
[22] |
V. Nanduri and D. K. Das, A survey of critical research areas in the energy segment of restructured electric power markets,, Electrical Power and Energy Systems, 31 (2009), 181. Google Scholar |
[23] |
A. Rudkevich, Supply Function Equilibrium in Power Markets: Learning All the Way,, TCA Technical Paper, (1999), 1299. Google Scholar |
[24] |
B. Willems, I. Rumiantseva and H. Weigt, Cournot versus Supply Functions: What does the data tell us?,, Energy Economics, 31 (2009), 38. Google Scholar |
show all references
References:
[1] |
E. J. Anderson and H. Xu, Supply function equilibrium in electricity spot markets with contracts and price caps,, J. Opt. Theory Appl., 124 (2005), 257.
doi: 10.1007/s10957-004-0924-2. |
[2] |
R. Baldick, Electricity market equilibrium models: The effect of paramatrization,, IEEE Transactions on Power Systems, 17 (2002), 1170. Google Scholar |
[3] |
R. Baldick and W. Hogan, Capacity constrained supply function equilibriam models of electricity markets: Stability, nondecreasing constraints, and function space iterations,, Paper PWP-089, (2001). Google Scholar |
[4] |
M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel programming problem,, J. Global Optim., 33 (2005), 465.
doi: 10.1007/s10898-004-1939-9. |
[5] |
F. Bolle, Supply function equilibria and the danger of tacit collution: The case of spot markets for electricity,, Energy Economics, 14 (1992), 94. Google Scholar |
[6] |
J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour,, SIAM Rev., 40 (1998), 228.
doi: 10.1137/S0036144596302644. |
[7] |
C. J. Day, B. F. Hobbs and J.-S. Pang, Oligopolistic competition in power networks: A conjectured supply function approach,, IEEE Transactions on Power Systems, 17 (2002), 597. Google Scholar |
[8] |
A. Downward, G. Zakeri and A. B. Philpott, On Cournot equilibria in electricity transmission networks,, Oper. Res., 58 (2010), 1194.
doi: 10.1287/opre.1100.0830. |
[9] |
J. Eichberger, "Game Theory for Economists,", Academic Press, (1993).
|
[10] |
J. F. Escobar and A. Jofré, Equilibrium analysis for a network model,, in, 81 (2006), 63.
doi: 10.1007/0-387-28654-3_3. |
[11] |
J. F. Escobar and A. Jofré, Monopolistic competition in electricity networks with resistance losses,, Econom. Theory, 44 (2010), 101.
doi: 10.1007/s00199-009-0460-2. |
[12] |
M. Fukushima and J.-S. Pang, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games,, Comput. Manag. Sci., 2 (2005), 21.
doi: 10.1007/s10287-004-0010-0. |
[13] |
R. J. Green and D. M. Newbery, Competition in the British electricity spot market,, J. of Political Economy, 100 (1992), 929. Google Scholar |
[14] |
R. Henrion, J. Outrata and T. Surowiec, Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model,, preprint, (2010). Google Scholar |
[15] |
B. F. Hobbs and J.-S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, IEEE Trans. Power Systems, 15 (2000), 638. Google Scholar |
[16] |
B. F. Hobbs and J.-S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures,, Math. Program. Ser. B, 101 (2004), 57.
doi: 10.1007/s10107-004-0537-4. |
[17] |
B. F. Hobbs and J.-S. Pang, Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints,, Oper. Research, 55 (2007), 113.
doi: 10.1287/opre.1060.0342. |
[18] |
X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with locational prices,, Oper. Res., 55 (2007), 809.
doi: 10.1287/opre.1070.0431. |
[19] |
P. D. Klemperer and M. A. Meyer, Supply function equilibria in oligopoly under uncertainty,, Econometrica, 57 (1989), 1243.
doi: 10.2307/1913707. |
[20] |
R. B. Myerson, "Game Theory. Analysis of Conflict,", Harvard University Press, (1991).
|
[21] |
N. K. Nair and L. X. Zhang, SmartGrid: Future networks for New Zealand power systems incorporating distributed generation,, Energy Policy, 37 (2009), 3418. Google Scholar |
[22] |
V. Nanduri and D. K. Das, A survey of critical research areas in the energy segment of restructured electric power markets,, Electrical Power and Energy Systems, 31 (2009), 181. Google Scholar |
[23] |
A. Rudkevich, Supply Function Equilibrium in Power Markets: Learning All the Way,, TCA Technical Paper, (1999), 1299. Google Scholar |
[24] |
B. Willems, I. Rumiantseva and H. Weigt, Cournot versus Supply Functions: What does the data tell us?,, Energy Economics, 31 (2009), 38. Google Scholar |
[1] |
Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091 |
[2] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51 |
[3] |
Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123 |
[4] |
Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1 |
[5] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1 |
[6] |
Limin Wen, Xianyi Wu, Xiaobing Zhao. The credibility premiums under generalized weighted loss functions. Journal of Industrial & Management Optimization, 2009, 5 (4) : 893-910. doi: 10.3934/jimo.2009.5.893 |
[7] |
Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1 |
[8] |
Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153 |
[9] |
Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019060 |
[10] |
Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843 |
[11] |
Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010 |
[12] |
Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial & Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617 |
[13] |
Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225 |
[14] |
Yu Han, Nan-Jing Huang. Some characterizations of the approximate solutions to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1135-1151. doi: 10.3934/jimo.2016.12.1135 |
[15] |
L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183 |
[16] |
Qilin Wang, Shengji Li. Semicontinuity of approximate solution mappings to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1303-1309. doi: 10.3934/jimo.2016.12.1303 |
[17] |
Kenji Kimura, Jen-Chih Yao. Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 167-181. doi: 10.3934/jimo.2008.4.167 |
[18] |
Xin Zuo, Chun-Rong Chen, Hong-Zhi Wei. Solution continuity of parametric generalized vector equilibrium problems with strictly pseudomonotone mappings. Journal of Industrial & Management Optimization, 2017, 13 (1) : 477-488. doi: 10.3934/jimo.2016027 |
[19] |
M. H. Li, S. J. Li, W. Y. Zhang. Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 683-696. doi: 10.3934/jimo.2009.5.683 |
[20] |
Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019034 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]