\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Globally convergent algorithm for solving stationary points for mathematical programs with complementarity constraints via nonsmooth reformulations

Abstract Related Papers Cited by
  • The purpose of the paper is to develop globally convergent algorithms for solving the popular stationarity systems for mathematical programs with complementarity constraints (MPCC) directly. Since the popular stationarity systems for MPCC contain some unknown index sets, we first present some nonsmooth reformulations for the stationarity systems by removing the unknown index sets and then we propose a Levenberg-Marquardt type method to solve them. Under some regularity conditions, we show that the proposed method is globally and superlinearly convergent. We further report some preliminary numerical results.
    Mathematics Subject Classification: Primary: 90C30; Secondary: 90C33.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. P. Bertsekas, "Nonlinear Programming," $2^{nd}$ edition, Athena Scientific, Belmont, Massachusetts, 1999.

    [2]

    F. Facchinei and J. Soares, A new merit function for nonlinear complementarity problems and a related algorithm, SIAM J. Optim., 7 (1997), 225-247.doi: 10.1137/S1052623494279110.

    [3]

    A. Fischer, A special Newton-type optimization method, Optim., 24 (1992), 269-284.doi: 10.1080/02331939208843795.

    [4]

    M. L. Flegel and C. Kanzow, Abadie-type constraint qualification for mathematical programs with equilibrium constraints, J. Optim. Theory Appl., 124 (2005), 595-614.doi: 10.1007/s10957-004-1176-x.

    [5]

    R. Fletcher, S. Leyffer, D. Ralph and S. Scholtes, Local convergence of SQP methods for mathematical programs with equilibrium constraints, SIAM J. Optim., 17 (2006), 259-286.doi: 10.1137/S1052623402407382.

    [6]

    M. Fukushima and G.-H. Lin, Smoothing methods for mathematical programs with equilibrium constraints, Proceedings of the ICKS'04, IEEE Computer Society, (2004), 206-213.

    [7]

    L. Guo and G.-H. Lin, Notes on some constraint qualifications for mathematical programs with equilibrium constraints, J. Optim. Theory Appl., (2012).doi: 10.1007/s10957-012-0084-8.

    [8]

    S. LeyfferMacMPEC-ampl collection of mathematical programms with equilibrium constraints. Available from: http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC.

    [9]

    G.-H. Lin, L. Guo and J.-J. YeSolving mathematical programs with equilibrium constraints as constrained equations, preprint.

    [10]

    T. De Luca, F. Facchinei and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Program., 75 (1996), 407-439.doi: 10.1016/S0025-5610(96)00028-7.

    [11]

    Z.-Q. Luo, J.-S. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints," Cambridge University Press, Cambridge, 1996.doi: 10.1017/CBO9780511983658.

    [12]

    J. V. Outrata, M. Kočvara and J. Zowe, "Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Theory, Applications and Numerical Results," Nonconvex Optimization and its Applications, 28, Kluwer Academic Publishers, Dordrecht, 1998.

    [13]

    J.-S. Pang, A B-differentiable equation-baesd, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems, Math. Program., 51 (1991), 101-131.doi: 10.1007/BF01586928.

    [14]

    J.-S. Pang and A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complementarity problem, Math. Program., 60 (1993), 295-337.doi: 10.1007/BF01580617.

    [15]

    J.-S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithm, SIAM J. Optim., 3 (1993), 443-465.doi: 10.1137/0803021.

    [16]

    L. Qi and J. sun, A nonsmooth version of Newton's method, Math. Program., 58 (1993), 353-367.doi: 10.1007/BF01581275.

    [17]

    P. Tseng, Growth behavior of a class of merit functions for the nonlinear complementarity problem, J. Optim. Theory Appl., 89 (1996), 17-37.doi: 10.1007/BF02192639.

    [18]

    J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints, J. Math. Anal. Appl., 307 (2005), 350-369.doi: 10.1016/j.jmaa.2004.10.032.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return