April  2013, 9(2): 411-429. doi: 10.3934/jimo.2013.9.411

Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model

1. 

Research Center of International Finance and Risk Management, East China Normal University, Shanghai, 200241, China

2. 

Department of Mathematics, Ningbo University, Ningbo, 315211, China

3. 

School of Finance and Statistics, East China Normal University, Shanghai, 200241

Received  November 2011 Revised  January 2013 Published  February 2013

This paper extends the model in Riesner (2007) to a Markov modulated Lévy process. The parameters of the Lévy process switch over time according to the different states of an economy, which is described by a finite-state continuous time Markov chain. Employing the local risk minimization method, we find an optimal hedging strategy for a general payment process. Finally, we give an example for single unit-linked insurance contracts with guarantee to display the specific locally risk-minimizing hedging strategy.
Citation: Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411
References:
[1]

K. Aase and S.-A. Persson, Pricing of unit-linked life insurance policies,, Scandinavian Actuarial Journal, 1994 (): 26.  doi: 10.1080/03461238.1994.10413928.  Google Scholar

[2]

J. P. Ansel and C. Stricker, Décomposition de Kunita-Watanabe,, in, 1557 (1993), 30.  doi: 10.1007/BFb0087960.  Google Scholar

[3]

J. Bi and J. Guo, Hedging unit-linked life insurance contracts in a financial market driven by shot-noise processes,, Applied Stochastic Models In Business And Industry, 26 (2010), 609.  doi: 10.1002/asmb.807.  Google Scholar

[4]

T. Chan, Pricing contingent claims on stocks driven by Lévy processes,, The Annals of Applied Probability, 9 (1999), 504.  doi: 10.1214/aoap/1029962753.  Google Scholar

[5]

A. Deshpande and M. K. Ghosh, Risk minimizing option pricing in a regime switching market,, Stochastic Analysis and Applications, 26 (2008), 313.  doi: 10.1080/07362990701857194.  Google Scholar

[6]

R. J. Elliott, L. Chan and T. K. Siu, Option pricing and Esscher transform under regime switching,, Annals of Finance, 1 (2005), 423.   Google Scholar

[7]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in, 5 (1991), 389.   Google Scholar

[8]

H. Föllmer and D. Sondermann, Hedging of non-redundant contingent claims,, in, (1986), 205.   Google Scholar

[9]

M. Ghosh, A. Arapostathis and S. Marcus, Ergodic control of switching diffusions,, SIAM Journal of Contral and Optimization, 35 (1997), 1952.  doi: 10.1137/S0363012996299302.  Google Scholar

[10]

J. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle,, Ecomometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[11]

J. Hoem, Markov chain models in life insurance,, Blätter der Deut. Gesell. Versicherungsmath, 9 (1969), 91.   Google Scholar

[12]

S. Lin, K. Tan and H. Yang, Pricing annuity guarantees under a regime-switching model,, North American Actuarial Journal, 13 (2009), 316.  doi: 10.1080/10920277.2009.10597557.  Google Scholar

[13]

T. Møller, Risk-minimizing hedging strategies for unit-linked life insurance contracts,, ASTIN Bulletin, 28 (1998), 17.   Google Scholar

[14]

T. Møller, Risk-mimizing hedging strategies for insurance payment processes,, Finance and Stochastics, 5 (2001), 419.  doi: 10.1007/s007800100041.  Google Scholar

[15]

R. Norberg, Hattendorff's theorem and Thiele's differential equation generalized,, Scandinavian Actuarial Journal, 1992 (): 2.  doi: 10.1080/03461238.1992.10413894.  Google Scholar

[16]

M. Riesner, Hedging life insurance contracts in a Lévy process financial market,, Insurance: Mathematics and Economics, 38 (2006), 599.  doi: 10.1016/j.insmatheco.2005.12.004.  Google Scholar

[17]

M. Riesner, Locally risk-minimizing hedging of insurance payment streams,, Astin Bulletin, 37 (2007), 67.  doi: 10.2143/AST.37.1.2020799.  Google Scholar

[18]

M. Schweizer, Option hedging for semimartingales,, Stochastic Processes and Their Applications, 37 (1991), 339.  doi: 10.1016/0304-4149(91)90053-F.  Google Scholar

[19]

M. Schweizer, Risk-minimizing hedging strategies under restricted information,, Mathematical Finance, 4 (1994), 327.  doi: 10.1111/j.1467-9965.1994.tb00062.x.  Google Scholar

[20]

M. Schweizer, A guided tour through quadratic hedging approaches,, in, (2001), 538.  doi: 10.1017/CBO9780511569708.016.  Google Scholar

[21]

M. Schweizer, Local risk-minimization for multidimensional assets and payment streams,, in, 83 (2008), 213.  doi: 10.4064/bc83-0-13.  Google Scholar

[22]

L. Qian, H. Yang and R. Wang, Locally risk-minimizing hedging strategies for unit-linked life insurance contracts under a regime switching Lévy model,, Frontiers of Mathematics in China, 6 (2011), 1185.  doi: 10.1007/s11464-011-0100-6.  Google Scholar

[23]

N. Vandaele and M. Vanmaele, A locally risk-minimizing hedging strategy for unit-linked life insurance contracts in a Lévy process financial market,, Insurance: Mathematics and Economics, 42 (2008), 1128.  doi: 10.1016/j.insmatheco.2008.03.001.  Google Scholar

[24]

T. Choulli, N. Vandaele and M. Vanmaele, The Föllmer-Schweizer decomposition: Comparison and description,, Stochastic Processes and their Applications, 120 (2010), 853.  doi: 10.1016/j.spa.2010.02.004.  Google Scholar

[25]

L. Xu and R. Wang, Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate,, Journal of Industrial and Management Optimization, 2 (2006), 165.  doi: 10.3934/jimo.2006.2.165.  Google Scholar

show all references

References:
[1]

K. Aase and S.-A. Persson, Pricing of unit-linked life insurance policies,, Scandinavian Actuarial Journal, 1994 (): 26.  doi: 10.1080/03461238.1994.10413928.  Google Scholar

[2]

J. P. Ansel and C. Stricker, Décomposition de Kunita-Watanabe,, in, 1557 (1993), 30.  doi: 10.1007/BFb0087960.  Google Scholar

[3]

J. Bi and J. Guo, Hedging unit-linked life insurance contracts in a financial market driven by shot-noise processes,, Applied Stochastic Models In Business And Industry, 26 (2010), 609.  doi: 10.1002/asmb.807.  Google Scholar

[4]

T. Chan, Pricing contingent claims on stocks driven by Lévy processes,, The Annals of Applied Probability, 9 (1999), 504.  doi: 10.1214/aoap/1029962753.  Google Scholar

[5]

A. Deshpande and M. K. Ghosh, Risk minimizing option pricing in a regime switching market,, Stochastic Analysis and Applications, 26 (2008), 313.  doi: 10.1080/07362990701857194.  Google Scholar

[6]

R. J. Elliott, L. Chan and T. K. Siu, Option pricing and Esscher transform under regime switching,, Annals of Finance, 1 (2005), 423.   Google Scholar

[7]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in, 5 (1991), 389.   Google Scholar

[8]

H. Föllmer and D. Sondermann, Hedging of non-redundant contingent claims,, in, (1986), 205.   Google Scholar

[9]

M. Ghosh, A. Arapostathis and S. Marcus, Ergodic control of switching diffusions,, SIAM Journal of Contral and Optimization, 35 (1997), 1952.  doi: 10.1137/S0363012996299302.  Google Scholar

[10]

J. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle,, Ecomometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[11]

J. Hoem, Markov chain models in life insurance,, Blätter der Deut. Gesell. Versicherungsmath, 9 (1969), 91.   Google Scholar

[12]

S. Lin, K. Tan and H. Yang, Pricing annuity guarantees under a regime-switching model,, North American Actuarial Journal, 13 (2009), 316.  doi: 10.1080/10920277.2009.10597557.  Google Scholar

[13]

T. Møller, Risk-minimizing hedging strategies for unit-linked life insurance contracts,, ASTIN Bulletin, 28 (1998), 17.   Google Scholar

[14]

T. Møller, Risk-mimizing hedging strategies for insurance payment processes,, Finance and Stochastics, 5 (2001), 419.  doi: 10.1007/s007800100041.  Google Scholar

[15]

R. Norberg, Hattendorff's theorem and Thiele's differential equation generalized,, Scandinavian Actuarial Journal, 1992 (): 2.  doi: 10.1080/03461238.1992.10413894.  Google Scholar

[16]

M. Riesner, Hedging life insurance contracts in a Lévy process financial market,, Insurance: Mathematics and Economics, 38 (2006), 599.  doi: 10.1016/j.insmatheco.2005.12.004.  Google Scholar

[17]

M. Riesner, Locally risk-minimizing hedging of insurance payment streams,, Astin Bulletin, 37 (2007), 67.  doi: 10.2143/AST.37.1.2020799.  Google Scholar

[18]

M. Schweizer, Option hedging for semimartingales,, Stochastic Processes and Their Applications, 37 (1991), 339.  doi: 10.1016/0304-4149(91)90053-F.  Google Scholar

[19]

M. Schweizer, Risk-minimizing hedging strategies under restricted information,, Mathematical Finance, 4 (1994), 327.  doi: 10.1111/j.1467-9965.1994.tb00062.x.  Google Scholar

[20]

M. Schweizer, A guided tour through quadratic hedging approaches,, in, (2001), 538.  doi: 10.1017/CBO9780511569708.016.  Google Scholar

[21]

M. Schweizer, Local risk-minimization for multidimensional assets and payment streams,, in, 83 (2008), 213.  doi: 10.4064/bc83-0-13.  Google Scholar

[22]

L. Qian, H. Yang and R. Wang, Locally risk-minimizing hedging strategies for unit-linked life insurance contracts under a regime switching Lévy model,, Frontiers of Mathematics in China, 6 (2011), 1185.  doi: 10.1007/s11464-011-0100-6.  Google Scholar

[23]

N. Vandaele and M. Vanmaele, A locally risk-minimizing hedging strategy for unit-linked life insurance contracts in a Lévy process financial market,, Insurance: Mathematics and Economics, 42 (2008), 1128.  doi: 10.1016/j.insmatheco.2008.03.001.  Google Scholar

[24]

T. Choulli, N. Vandaele and M. Vanmaele, The Föllmer-Schweizer decomposition: Comparison and description,, Stochastic Processes and their Applications, 120 (2010), 853.  doi: 10.1016/j.spa.2010.02.004.  Google Scholar

[25]

L. Xu and R. Wang, Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate,, Journal of Industrial and Management Optimization, 2 (2006), 165.  doi: 10.3934/jimo.2006.2.165.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[3]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[6]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[7]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[8]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[9]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[10]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[11]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[12]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]