Citation: |
[1] |
R. P. Agarwal, I. Ahmad and S. K. Gupta, A note on higher order nondifferentiable symmetric duality in multiobjective programming, Applied Mathematics Letters, 24 (2011), 1308-1311.doi: 10.1016/j.aml.2011.02.021. |
[2] |
A. Batatorescu, V. Preda and M Beldiman, Higher-order symmetric multiobjective duality involving generalized $(F,\rho,\gamma,b)$-convexity, Rev. Roumaine Math. Pures Appl., 52 (2007), 619-630. |
[3] |
X. Chen, Higher order symmetric duality in non-differentiable multiobjective programming problems, J. Math. Anal. Appl., 290 (2004), 423-435.doi: 10.1016/j.jmaa.2003.10.004. |
[4] |
M. Schechter, More on subgradient duality, J. Math. Anal. Appl., 71 (1979), 251-262.doi: 10.1016/0022-247X(79)90228-2. |
[5] |
X. M. Yang, On second order symmetric duality in nondifferentiable multiobjective programming, Journal of Industrial and Management Optimization, 5 (2009), 697-703.doi: 10.3934/jimo.2009.5.697. |
[6] |
X. M. Yang, On symmetric and self duality in vector optimization problem, Journal of Industrial and Management Optimization, 7 (2011), 523-529.doi: 10.3934/jimo.2011.7.523. |
[7] |
X. M. Yang and X. Q. Yang, A note on mixed type converse duality in multiobjective programming problems, Journal of Industrial and Management Optimization, 6 (2010), 497-500.doi: 10.3934/jimo.2010.6.497. |
[8] |
X. M. Yang, X. Q. Yang and K. L. Teo, Higher-order symmetric duality in multiobjective programming with invexity, Journal of Industrial and Management Optimization, 4 (2008), 385-391.doi: 10.3934/jimo.2008.4.385. |
[9] |
X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou, Second-order symmetric duality in non-differentiable multiobjective programming with $F$-convexity, European J. Oper. Res., 164 (2005), 406-416.doi: 10.1016/j.ejor.2003.04.007. |