\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs

Abstract Related Papers Cited by
  • In this paper, we establish a strong duality theorem for Mond-Weir type multiobjective higher order nondifferentiable symmetric dual programs. Our works correct some deficiencies in recent papers [higher-order symmetric duality in nondifferentiable multiobjective programming problems, J. Math. Anal. Appl. 290(2004)423-435] and [A note on higher-order nondifferentiable symmetric duality in multiobjective programming, Appl. Math. Letters 24(2011) 1308-1311].
    Mathematics Subject Classification: Primary: 90C29, 49J52, 90C46.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. P. Agarwal, I. Ahmad and S. K. Gupta, A note on higher order nondifferentiable symmetric duality in multiobjective programming, Applied Mathematics Letters, 24 (2011), 1308-1311.doi: 10.1016/j.aml.2011.02.021.

    [2]

    A. Batatorescu, V. Preda and M Beldiman, Higher-order symmetric multiobjective duality involving generalized $(F,\rho,\gamma,b)$-convexity, Rev. Roumaine Math. Pures Appl., 52 (2007), 619-630.

    [3]

    X. Chen, Higher order symmetric duality in non-differentiable multiobjective programming problems, J. Math. Anal. Appl., 290 (2004), 423-435.doi: 10.1016/j.jmaa.2003.10.004.

    [4]

    M. Schechter, More on subgradient duality, J. Math. Anal. Appl., 71 (1979), 251-262.doi: 10.1016/0022-247X(79)90228-2.

    [5]

    X. M. Yang, On second order symmetric duality in nondifferentiable multiobjective programming, Journal of Industrial and Management Optimization, 5 (2009), 697-703.doi: 10.3934/jimo.2009.5.697.

    [6]

    X. M. Yang, On symmetric and self duality in vector optimization problem, Journal of Industrial and Management Optimization, 7 (2011), 523-529.doi: 10.3934/jimo.2011.7.523.

    [7]

    X. M. Yang and X. Q. Yang, A note on mixed type converse duality in multiobjective programming problems, Journal of Industrial and Management Optimization, 6 (2010), 497-500.doi: 10.3934/jimo.2010.6.497.

    [8]

    X. M. Yang, X. Q. Yang and K. L. Teo, Higher-order symmetric duality in multiobjective programming with invexity, Journal of Industrial and Management Optimization, 4 (2008), 385-391.doi: 10.3934/jimo.2008.4.385.

    [9]

    X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou, Second-order symmetric duality in non-differentiable multiobjective programming with $F$-convexity, European J. Oper. Res., 164 (2005), 406-416.doi: 10.1016/j.ejor.2003.04.007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(54) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return