July  2013, 9(3): 525-530. doi: 10.3934/jimo.2013.9.525

Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs

1. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

3. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  May 2012 Revised  March 2013 Published  April 2013

In this paper, we establish a strong duality theorem for Mond-Weir type multiobjective higher order nondifferentiable symmetric dual programs. Our works correct some deficiencies in recent papers [higher-order symmetric duality in nondifferentiable multiobjective programming problems, J. Math. Anal. Appl. 290(2004)423-435] and [A note on higher-order nondifferentiable symmetric duality in multiobjective programming, Appl. Math. Letters 24(2011) 1308-1311].
Citation: Xinmin Yang, Jin Yang, Heung Wing Joseph Lee. Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 525-530. doi: 10.3934/jimo.2013.9.525
References:
[1]

R. P. Agarwal, I. Ahmad and S. K. Gupta, A note on higher order nondifferentiable symmetric duality in multiobjective programming,, Applied Mathematics Letters, 24 (2011), 1308. doi: 10.1016/j.aml.2011.02.021. Google Scholar

[2]

A. Batatorescu, V. Preda and M Beldiman, Higher-order symmetric multiobjective duality involving generalized $(F,\rho,\gamma,b)$-convexity,, Rev. Roumaine Math. Pures Appl., 52 (2007), 619. Google Scholar

[3]

X. Chen, Higher order symmetric duality in non-differentiable multiobjective programming problems,, J. Math. Anal. Appl., 290 (2004), 423. doi: 10.1016/j.jmaa.2003.10.004. Google Scholar

[4]

M. Schechter, More on subgradient duality,, J. Math. Anal. Appl., 71 (1979), 251. doi: 10.1016/0022-247X(79)90228-2. Google Scholar

[5]

X. M. Yang, On second order symmetric duality in nondifferentiable multiobjective programming,, Journal of Industrial and Management Optimization, 5 (2009), 697. doi: 10.3934/jimo.2009.5.697. Google Scholar

[6]

X. M. Yang, On symmetric and self duality in vector optimization problem,, Journal of Industrial and Management Optimization, 7 (2011), 523. doi: 10.3934/jimo.2011.7.523. Google Scholar

[7]

X. M. Yang and X. Q. Yang, A note on mixed type converse duality in multiobjective programming problems,, Journal of Industrial and Management Optimization, 6 (2010), 497. doi: 10.3934/jimo.2010.6.497. Google Scholar

[8]

X. M. Yang, X. Q. Yang and K. L. Teo, Higher-order symmetric duality in multiobjective programming with invexity,, Journal of Industrial and Management Optimization, 4 (2008), 385. doi: 10.3934/jimo.2008.4.385. Google Scholar

[9]

X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou, Second-order symmetric duality in non-differentiable multiobjective programming with $F$-convexity,, European J. Oper. Res., 164 (2005), 406. doi: 10.1016/j.ejor.2003.04.007. Google Scholar

show all references

References:
[1]

R. P. Agarwal, I. Ahmad and S. K. Gupta, A note on higher order nondifferentiable symmetric duality in multiobjective programming,, Applied Mathematics Letters, 24 (2011), 1308. doi: 10.1016/j.aml.2011.02.021. Google Scholar

[2]

A. Batatorescu, V. Preda and M Beldiman, Higher-order symmetric multiobjective duality involving generalized $(F,\rho,\gamma,b)$-convexity,, Rev. Roumaine Math. Pures Appl., 52 (2007), 619. Google Scholar

[3]

X. Chen, Higher order symmetric duality in non-differentiable multiobjective programming problems,, J. Math. Anal. Appl., 290 (2004), 423. doi: 10.1016/j.jmaa.2003.10.004. Google Scholar

[4]

M. Schechter, More on subgradient duality,, J. Math. Anal. Appl., 71 (1979), 251. doi: 10.1016/0022-247X(79)90228-2. Google Scholar

[5]

X. M. Yang, On second order symmetric duality in nondifferentiable multiobjective programming,, Journal of Industrial and Management Optimization, 5 (2009), 697. doi: 10.3934/jimo.2009.5.697. Google Scholar

[6]

X. M. Yang, On symmetric and self duality in vector optimization problem,, Journal of Industrial and Management Optimization, 7 (2011), 523. doi: 10.3934/jimo.2011.7.523. Google Scholar

[7]

X. M. Yang and X. Q. Yang, A note on mixed type converse duality in multiobjective programming problems,, Journal of Industrial and Management Optimization, 6 (2010), 497. doi: 10.3934/jimo.2010.6.497. Google Scholar

[8]

X. M. Yang, X. Q. Yang and K. L. Teo, Higher-order symmetric duality in multiobjective programming with invexity,, Journal of Industrial and Management Optimization, 4 (2008), 385. doi: 10.3934/jimo.2008.4.385. Google Scholar

[9]

X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou, Second-order symmetric duality in non-differentiable multiobjective programming with $F$-convexity,, European J. Oper. Res., 164 (2005), 406. doi: 10.1016/j.ejor.2003.04.007. Google Scholar

[1]

Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial & Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385

[2]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019033

[3]

Xinmin Yang. On second order symmetric duality in nondifferentiable multiobjective programming. Journal of Industrial & Management Optimization, 2009, 5 (4) : 697-703. doi: 10.3934/jimo.2009.5.697

[4]

Xinmin Yang, Xiaoqi Yang. A note on mixed type converse duality in multiobjective programming problems. Journal of Industrial & Management Optimization, 2010, 6 (3) : 497-500. doi: 10.3934/jimo.2010.6.497

[5]

Regina S. Burachik, Xiaoqi Yang. Asymptotic strong duality. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 539-548. doi: 10.3934/naco.2011.1.539

[6]

Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial & Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881

[7]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019115

[8]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[9]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[10]

Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012

[11]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[12]

Xian-Jun Long, Nan-Jing Huang, Zhi-Bin Liu. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. Journal of Industrial & Management Optimization, 2008, 4 (2) : 287-298. doi: 10.3934/jimo.2008.4.287

[13]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[14]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

[15]

Annamaria Barbagallo, Rosalba Di Vincenzo, Stéphane Pia. On strong Lagrange duality for weighted traffic equilibrium problem. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1097-1113. doi: 10.3934/dcds.2011.31.1097

[16]

Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003

[17]

Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial & Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523

[18]

Yong Fang, Patrick Foulon, Boris Hasselblatt. Zygmund strong foliations in higher dimension. Journal of Modern Dynamics, 2010, 4 (3) : 549-569. doi: 10.3934/jmd.2010.4.549

[19]

Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106

[20]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019102

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]