\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A conic approximation method for the 0-1 quadratic knapsack problem

Abstract Related Papers Cited by
  • This paper solves the 0-1 quadratic knapsack problem using a conic approximation method. We propose a nonnegative quadratic function cone program to equivalently represent the problem. Based on the technique of linear matrix inequality, we present an adaptive approximation scheme to obtain a global optimal solution or lower bound for the problem by using computable cones. Some computational examples are provided to show the effectiveness of the proposed method.
    Mathematics Subject Classification: Primary: 90C10, 90C20, 90C22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ben-Tal and A. Nemirovski, "Lectures On Modern Convex Optimization, Analysis, Algorithms and Engineering Applications," $1^{st}$ edition, MPS/SIAM Series on Optimization, Philadelphia, 2001.doi: 10.1137/1.9780898718829.

    [2]

    A. Billionnet and F. Calmels, Linear programming for the 0-1 quadratic knapsack problem, European Journal of Operation Research, 92 (1996), 310-325.doi: 10.1016/0377-2217(94)00229-0.

    [3]

    A. Billionnet and E. Soutif, An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem, European Journal of Operational Research, 157 (2004), 565-575.doi: 10.1016/S0377-2217(03)00244-3.

    [4]

    A. Billionnet and E. Soutif, Using a mixed integer programming tool for solving the 0-1 quadratic knapsack problem, INFORMS Journal on Computing, 16 (2004), 188-197.doi: 10.1287/ijoc.1030.0029.

    [5]

    A. Caprara, D. Pisinger and P. Toth, Exact solution of quadratic knapsack problem, INFORMS Journal on Computing, 11 (1999), 125-139.doi: 10.1287/ijoc.11.2.125.

    [6]

    G. Dijkhuizen and U. Faigle, A cutting-plane approach to the edge-weighted maximal clique problem, European Journal Operational Research, 69 (1993), 121-130.doi: 10.1016/0377-2217(93)90097-7.

    [7]

    G. Gallo, P. L. Hammer and B. Simeone, Quadratic knapsack problems, Mathematical Programming Study, 12 (1980), 132-149.doi: 10.1007/BFb0120892.

    [8]

    D. J. Grainger and A. N. Letchford, "Improving a Formulation of the Quadratic Knapsack Problem," Available from: http://www.optimization-online.org/DB_HTML/2007/06/1678.html.

    [9]

    M. Grant and S. Boyed, CVX: Matlab software for disciplined convex programming, version 2.0(2012), Available from: http://cvxr.com/cvx.

    [10]

    C. Helmberg, F. Rendl and R. Weismantel, A semidefinite programming approach to the quadratic knapsack problem, Journal of Combinatorial Optimization, 4 (2000), 197-215.doi: 10.1023/A:1009898604624.

    [11]

    K. Holmström, A. O. Göran and M. M. Edvall, "User's Guide for Tomlab 7," Available from: http://tomopt.com/tomlab/.

    [12]

    H. Kellerer and V. A. Strusevich, Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications, Algorithmica, 57 (2010), 769-795.doi: 10.1007/s00453-008-9248-1.

    [13]

    L. Létocart, A. Nagih and G. Plateau, Reoptimization in Lagrangian methods for the 0-1 quadratic knapsack problem, Computers and Operations Research, 39 (2012), 12-18.doi: 10.1016/j.cor.2010.10.027.

    [14]

    C. Lu, S.-C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems, SIAM Journal on Optimization, 21 (2011), 1475-1490.doi: 10.1137/100793955.

    [15]

    C. Lu, Q. Jin, S.-C. Fang, Z. Wang and W. Xing, Adaptive computable approximation to cones of nonnegative quadratic functions, Submitted to Optimization, (2011).

    [16]

    C. Lu, Z. Wang, W. Xing and S.-C. Fang, Extended canonical duality and conic programming for solving 0-1 quadratic programming problems, Journal of Industrial and Management Optimization, 6 (2010), 779-793.doi: 10.3934/jimo.2010.6.779.

    [17]

    P. Michelon and L. Veilleux, Lagrangian methods for the 0-1 quadratic knapsack problem, European Journal of Operational Research, 92 (1996), 326-341.doi: 10.1016/0377-2217(94)00286-X.

    [18]

    P. M. Pardalos and S. A. Vavasis, Quadratic programming with one negative eigenvalue is NP-Hard, Journal of Global Optimization, 1 (1991), 15-22.doi: 10.1007/BF00120662.

    [19]

    K. Park, K. Lee and S. Park, An extended formulation approach to the edge-weighted maximal clique problem, European Journal of Operational Research, 95 (1996), 671-682.doi: 10.1016/0377-2217(95)00299-5.

    [20]

    D. Pisinger, The quadratic knapsack problem-a survey, Discrete Applied Mathematics, 155 (2007), 623-648.doi: 10.1016/j.dam.2006.08.007.

    [21]

    J. Rhys, A selection problem of shared fixed costs and network flows, Management Science, 17 (1970), 200-207.doi: 10.1287/mnsc.17.3.200.

    [22]

    J. F. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.doi: 10.1287/moor.28.2.246.14485.

    [23]

    C. Witzgall, "Mathematical Methods of Site Selection for Electronic Message System(EMS)," Technical Report, NBS Internal Report, 1975.

    [24]

    X. J. Zheng, X. L. Sun and D. Li, On the reduction of duality gap in quadratic knapsack problems, Journal of Global Optimization, 54 (2012), 325-339.doi: 10.1007/s10898-012-9872-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return