• Previous Article
    Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization
  • JIMO Home
  • This Issue
  • Next Article
    A log-exponential regularization method for a mathematical program with general vertical complementarity constraints
July  2013, 9(3): 579-593. doi: 10.3934/jimo.2013.9.579

On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach

1. 

Department of Control and Automation, CINVESTAV, Av, Instituto Politecnico Nacional 2508, Mexico D.F., Mexico, Mexico, Mexico

Received  September 2011 Revised  October 2012 Published  April 2013

This paper is devoted to a problem of robust control design for a class of continuous-time dynamic systems with bounded uncertainties. We study a family of nonlinearly affine control systems and develop a computational extension of the conventional invariant ellipsoid techniques. The obtained method can be considered as a powerful numerical approach that makes it possible to design a concrete stabilizing control strategies for the resulting closed-loop systems. The design procedure for this feedback-type control is based on the classic Lyapunov-type stability analysis of invariant sets for the given dynamic system. We study the necessary theoretic basis and propose a computational algorithm that guarantee some minimality properties of the stability/attractivity regions for dynamic systems under consideration. The complete solution procedure contains an auxiliary LMI-constrained optimization problem. The effectiveness of the proposed robust control design is illustrated by a numerical example.
Citation: Vadim Azhmyakov, Alex Poznyak, Omar Gonzalez. On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach. Journal of Industrial & Management Optimization, 2013, 9 (3) : 579-593. doi: 10.3934/jimo.2013.9.579
References:
[1]

V. Azhmyakov, Stability of differential inclusions: A computational approach,, Mathematical Problems in Engineering, 2006 (2006), 1.  doi: 10.1155/MPE/2006/17837.  Google Scholar

[2]

V. Azhmyakov, V. G. Boltyanski and A. Poznyak, Optimal control of impulsive hybrid systems,, Nonlinear Analysis: Hybrid Systems, 2 (2008), 1089.  doi: 10.1016/j.nahs.2008.09.003.  Google Scholar

[3]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, Journal of Industrial and Management Optimization, 4 (2008), 697.  doi: 10.3934/jimo.2008.4.697.  Google Scholar

[4]

V. Azhmyakov, A gradient-type algorithm for a class of optimal control processes governed by hybrid dynamical systems,, IMA Journal of Mathematical Control and Information, 28 (2011), 291.  doi: 10.1093/imamci/dnr010.  Google Scholar

[5]

V. Azhmyakov, On the geometric aspects of the invariant ellipsoid method: Application to the robust control design,, in, (2011), 1353.  doi: 10.1109/CDC.2011.6161180.  Google Scholar

[6]

V. Azhmyakov, M. V. Basin and J. Raisch, Proximal point based approach to optimal control of affine switched systems,, Discrete Event Dynamic Systems, 22 (2012), 61.  doi: 10.1007/s10626-011-0109-8.  Google Scholar

[7]

A. E. Barabanov and O. N. Granichin, Optimal controller for linear plants with bounded noise,, Automation and Remote Control, 45 (1984), 39.   Google Scholar

[8]

M. Basin and D. Calderon-Alvarez, Optimal filtering over linear observations with unknown parameters,, Journal of The Franklin Institute, 347 (2010), 988.  doi: 10.1016/j.jfranklin.2010.01.006.  Google Scholar

[9]

M. Basin, J. Rodriguez-Gonzalez and L. Fridman, Optimal and robust control for linear state-delay systems,, Journal of The Franklin Institute, 344 (2007), 830.  doi: 10.1016/j.jfranklin.2006.10.002.  Google Scholar

[10]

F. Blanchini and S. Miani, "Set-Theoretic Methods in Control,", Birkhäuser, (2008).   Google Scholar

[11]

S. Boyd, E. Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities in System and Control Theory,", SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[12]

P. Chen, H. Qin and J. Huang, Local stabilization of a class of nonlinear systems by dynamic output feedback,, Automatica, 37 (2001), 969.  doi: 10.1016/S0005-1098(01)00047-4.  Google Scholar

[13]

D. F. Coutinho, A. Trofino and K. A. Barbosa, Robust linear dynamic output feedback controllers for a class of nonlinear systems,, in, (2003), 374.   Google Scholar

[14]

M. A. Dahleh, J. B. Pearson and J. Boyd, Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization,, IEEE Transactions on Automatic Control, 33 (1988), 722.  doi: 10.1109/9.1288.  Google Scholar

[15]

G. J. Duncan and F. C. Schweppe, Control of linear dynamic systems with set constrained disturbances,, IEEE Transactions on Automatic Control, AC-16 (1971), 411.   Google Scholar

[16]

E. Fridman and Y. Orlov, On stability of linear parabolic distributed parameter systems with time-varying delays,, in, (2007), 1597.  doi: 10.1109/CDC.2007.4434196.  Google Scholar

[17]

E. Fridman, A refined input delay approach to sampled-data control,, Automatica, 46 (2010), 421.  doi: 10.1016/j.automatica.2009.11.017.  Google Scholar

[18]

L. El Ghaoui and S. Niculescu, "Advances in Linear Matrix Inequalities in Control,", SIAM, (2000).  doi: 10.1137/1.9780898719833.  Google Scholar

[19]

W. Haddad and V. Chellaboina, "Nonlinear Dynamical Systems and Control,", Princeton University Press, (2008).   Google Scholar

[20]

A. Isidori, A. R. Teel and L. Praly, A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output feedback,, System and Control Letters, 39 (2000), 165.  doi: 10.1016/S0167-6911(99)00083-3.  Google Scholar

[21]

I. Karafyllis and Z.-P. Jiang, "Stability and Stabilization of Nonlinear Systems,", Springer, (2011).  doi: 10.1007/978-0-85729-513-2.  Google Scholar

[22]

C. T. Kelley, L. Qi, X. Tong and H. Yin, Finding a stable solution of a system of nonlinear equations arising from dynamic systems,, Journal of Industrial and Management Optimization, 7 (2011), 497.  doi: 10.3934/jimo.2011.7.497.  Google Scholar

[23]

H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002).  doi: 10.1007/s11071-008-9349-z.  Google Scholar

[24]

A. B. Kurzhanski and P. Varaiya, Ellipsoidal techniques for reachability under state constraints,, SIAM Journal on Control and Optimization, 45 (2006), 1369.  doi: 10.1137/S0363012903437605.  Google Scholar

[25]

A. B. Kurzhanski and V. M. Veliov, "Modeling Techniques and Uncertain Systems,", Birkhäuser, (1994).   Google Scholar

[26]

W. Lin and C. Qian, Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback,, Automatica, 37 (2001), 1093.  doi: 10.1016/S0005-1098(01)00056-5.  Google Scholar

[27]

M. Mera, A. Poznyak and V. Azhmyakov, On the robust control design for a class of continuous-time dynamical systems with a sample-data output,, in, (2011), 5819.   Google Scholar

[28]

A. N. Michel, L. Hou and D. Liu, "Stability of Dynamical Systems,", Birkhäuser, (2007).   Google Scholar

[29]

P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems,, Systems and Control Letters, 57 (2008), 378.  doi: 10.1016/j.sysconle.2007.10.009.  Google Scholar

[30]

E. Polak, "Optimization,", Springer, (1997).  doi: 10.1007/978-1-4612-0663-7.  Google Scholar

[31]

B. T. Polyak, S. A. Nazin, C. Durieu and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty,, Automatica, 40 (2004), 1171.  doi: 10.1016/j.automatica.2004.02.014.  Google Scholar

[32]

B. T. Polyak and M. V. Topunov, Suppression of bounded exogeneous disturbances: Output control,, Automation and Remote Control, 69 (2008), 801.  doi: 10.1134/S000511790805007X.  Google Scholar

[33]

A. Polyakov and A. Poznyak, Lyapunov function design for finite-time convergence analysis: Twisting controller for second-order sliding mode realization,, Automatica, 45 (2009), 444.  doi: 10.1016/j.automatica.2008.07.013.  Google Scholar

[34]

A. Poznyak, "Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques,", Elsevier, (2008).   Google Scholar

[35]

A. Poznyak, V. Azhmyakov and M. Mera, Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs,, International Journal of Control, 84 (2011), 1408.  doi: 10.1080/00207179.2011.603097.  Google Scholar

[36]

E. Sontag, "Mathematical Control Theory,", Springer, (1998).   Google Scholar

[37]

E. D. Sontag, Further facts about input to state stabilization,, IEEE Transactions on Automatic Control, AC-35 (1990), 473.  doi: 10.1109/9.52307.  Google Scholar

[38]

A. R. Teel, D. Nesic and P. V. Kokotovic, A note on input-to-state stability of sampled-data nonlinear systems,, in, (1998), 2473.  doi: 10.1109/CDC.1998.757793.  Google Scholar

[39]

A. R. Teel, L. Moreau and D. Nesic, A note on the robustness of input-to-state stability,, in, (2001), 875.   Google Scholar

[40]

E. D. Yakubovich, Solution of the optimal control problem for the linear discrete systems,, Automation and Remote Control, 36 (1976), 1447.   Google Scholar

[41]

V. I. Zubov, "Mathematical Methods for the Study of Automatic Control Systems,", Pergamon Press, (1962).   Google Scholar

show all references

References:
[1]

V. Azhmyakov, Stability of differential inclusions: A computational approach,, Mathematical Problems in Engineering, 2006 (2006), 1.  doi: 10.1155/MPE/2006/17837.  Google Scholar

[2]

V. Azhmyakov, V. G. Boltyanski and A. Poznyak, Optimal control of impulsive hybrid systems,, Nonlinear Analysis: Hybrid Systems, 2 (2008), 1089.  doi: 10.1016/j.nahs.2008.09.003.  Google Scholar

[3]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, Journal of Industrial and Management Optimization, 4 (2008), 697.  doi: 10.3934/jimo.2008.4.697.  Google Scholar

[4]

V. Azhmyakov, A gradient-type algorithm for a class of optimal control processes governed by hybrid dynamical systems,, IMA Journal of Mathematical Control and Information, 28 (2011), 291.  doi: 10.1093/imamci/dnr010.  Google Scholar

[5]

V. Azhmyakov, On the geometric aspects of the invariant ellipsoid method: Application to the robust control design,, in, (2011), 1353.  doi: 10.1109/CDC.2011.6161180.  Google Scholar

[6]

V. Azhmyakov, M. V. Basin and J. Raisch, Proximal point based approach to optimal control of affine switched systems,, Discrete Event Dynamic Systems, 22 (2012), 61.  doi: 10.1007/s10626-011-0109-8.  Google Scholar

[7]

A. E. Barabanov and O. N. Granichin, Optimal controller for linear plants with bounded noise,, Automation and Remote Control, 45 (1984), 39.   Google Scholar

[8]

M. Basin and D. Calderon-Alvarez, Optimal filtering over linear observations with unknown parameters,, Journal of The Franklin Institute, 347 (2010), 988.  doi: 10.1016/j.jfranklin.2010.01.006.  Google Scholar

[9]

M. Basin, J. Rodriguez-Gonzalez and L. Fridman, Optimal and robust control for linear state-delay systems,, Journal of The Franklin Institute, 344 (2007), 830.  doi: 10.1016/j.jfranklin.2006.10.002.  Google Scholar

[10]

F. Blanchini and S. Miani, "Set-Theoretic Methods in Control,", Birkhäuser, (2008).   Google Scholar

[11]

S. Boyd, E. Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities in System and Control Theory,", SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[12]

P. Chen, H. Qin and J. Huang, Local stabilization of a class of nonlinear systems by dynamic output feedback,, Automatica, 37 (2001), 969.  doi: 10.1016/S0005-1098(01)00047-4.  Google Scholar

[13]

D. F. Coutinho, A. Trofino and K. A. Barbosa, Robust linear dynamic output feedback controllers for a class of nonlinear systems,, in, (2003), 374.   Google Scholar

[14]

M. A. Dahleh, J. B. Pearson and J. Boyd, Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization,, IEEE Transactions on Automatic Control, 33 (1988), 722.  doi: 10.1109/9.1288.  Google Scholar

[15]

G. J. Duncan and F. C. Schweppe, Control of linear dynamic systems with set constrained disturbances,, IEEE Transactions on Automatic Control, AC-16 (1971), 411.   Google Scholar

[16]

E. Fridman and Y. Orlov, On stability of linear parabolic distributed parameter systems with time-varying delays,, in, (2007), 1597.  doi: 10.1109/CDC.2007.4434196.  Google Scholar

[17]

E. Fridman, A refined input delay approach to sampled-data control,, Automatica, 46 (2010), 421.  doi: 10.1016/j.automatica.2009.11.017.  Google Scholar

[18]

L. El Ghaoui and S. Niculescu, "Advances in Linear Matrix Inequalities in Control,", SIAM, (2000).  doi: 10.1137/1.9780898719833.  Google Scholar

[19]

W. Haddad and V. Chellaboina, "Nonlinear Dynamical Systems and Control,", Princeton University Press, (2008).   Google Scholar

[20]

A. Isidori, A. R. Teel and L. Praly, A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output feedback,, System and Control Letters, 39 (2000), 165.  doi: 10.1016/S0167-6911(99)00083-3.  Google Scholar

[21]

I. Karafyllis and Z.-P. Jiang, "Stability and Stabilization of Nonlinear Systems,", Springer, (2011).  doi: 10.1007/978-0-85729-513-2.  Google Scholar

[22]

C. T. Kelley, L. Qi, X. Tong and H. Yin, Finding a stable solution of a system of nonlinear equations arising from dynamic systems,, Journal of Industrial and Management Optimization, 7 (2011), 497.  doi: 10.3934/jimo.2011.7.497.  Google Scholar

[23]

H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002).  doi: 10.1007/s11071-008-9349-z.  Google Scholar

[24]

A. B. Kurzhanski and P. Varaiya, Ellipsoidal techniques for reachability under state constraints,, SIAM Journal on Control and Optimization, 45 (2006), 1369.  doi: 10.1137/S0363012903437605.  Google Scholar

[25]

A. B. Kurzhanski and V. M. Veliov, "Modeling Techniques and Uncertain Systems,", Birkhäuser, (1994).   Google Scholar

[26]

W. Lin and C. Qian, Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback,, Automatica, 37 (2001), 1093.  doi: 10.1016/S0005-1098(01)00056-5.  Google Scholar

[27]

M. Mera, A. Poznyak and V. Azhmyakov, On the robust control design for a class of continuous-time dynamical systems with a sample-data output,, in, (2011), 5819.   Google Scholar

[28]

A. N. Michel, L. Hou and D. Liu, "Stability of Dynamical Systems,", Birkhäuser, (2007).   Google Scholar

[29]

P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems,, Systems and Control Letters, 57 (2008), 378.  doi: 10.1016/j.sysconle.2007.10.009.  Google Scholar

[30]

E. Polak, "Optimization,", Springer, (1997).  doi: 10.1007/978-1-4612-0663-7.  Google Scholar

[31]

B. T. Polyak, S. A. Nazin, C. Durieu and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty,, Automatica, 40 (2004), 1171.  doi: 10.1016/j.automatica.2004.02.014.  Google Scholar

[32]

B. T. Polyak and M. V. Topunov, Suppression of bounded exogeneous disturbances: Output control,, Automation and Remote Control, 69 (2008), 801.  doi: 10.1134/S000511790805007X.  Google Scholar

[33]

A. Polyakov and A. Poznyak, Lyapunov function design for finite-time convergence analysis: Twisting controller for second-order sliding mode realization,, Automatica, 45 (2009), 444.  doi: 10.1016/j.automatica.2008.07.013.  Google Scholar

[34]

A. Poznyak, "Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques,", Elsevier, (2008).   Google Scholar

[35]

A. Poznyak, V. Azhmyakov and M. Mera, Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs,, International Journal of Control, 84 (2011), 1408.  doi: 10.1080/00207179.2011.603097.  Google Scholar

[36]

E. Sontag, "Mathematical Control Theory,", Springer, (1998).   Google Scholar

[37]

E. D. Sontag, Further facts about input to state stabilization,, IEEE Transactions on Automatic Control, AC-35 (1990), 473.  doi: 10.1109/9.52307.  Google Scholar

[38]

A. R. Teel, D. Nesic and P. V. Kokotovic, A note on input-to-state stability of sampled-data nonlinear systems,, in, (1998), 2473.  doi: 10.1109/CDC.1998.757793.  Google Scholar

[39]

A. R. Teel, L. Moreau and D. Nesic, A note on the robustness of input-to-state stability,, in, (2001), 875.   Google Scholar

[40]

E. D. Yakubovich, Solution of the optimal control problem for the linear discrete systems,, Automation and Remote Control, 36 (1976), 1447.   Google Scholar

[41]

V. I. Zubov, "Mathematical Methods for the Study of Automatic Control Systems,", Pergamon Press, (1962).   Google Scholar

[1]

Hussain Alazki, Alexander Poznyak. Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method. Journal of Industrial & Management Optimization, 2016, 12 (1) : 169-186. doi: 10.3934/jimo.2016.12.169

[2]

Chen Li, Fajie Wei, Shenghan Zhou. Prediction method based on optimization theory and its application. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1213-1221. doi: 10.3934/dcdss.2015.8.1213

[3]

Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial & Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103

[4]

Chun-Xiang Guo, Guo Qiang, Jin Mao-Zhu, Zhihan Lv. Dynamic systems based on preference graph and distance. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1139-1154. doi: 10.3934/dcdss.2015.8.1139

[5]

Yuji Harata, Yoshihisa Banno, Kouichi Taji. Parametric excitation based bipedal walking: Control method and optimization. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 171-190. doi: 10.3934/naco.2011.1.171

[6]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

[7]

Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33

[8]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019128

[9]

Vadim Azhmyakov. An approach to controlled mechanical systems based on the multiobjective optimization technique. Journal of Industrial & Management Optimization, 2008, 4 (4) : 697-712. doi: 10.3934/jimo.2008.4.697

[10]

Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial & Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153

[11]

Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12.

[12]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[13]

Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial & Management Optimization, 2012, 8 (2) : 469-484. doi: 10.3934/jimo.2012.8.469

[14]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059

[15]

Songhai Deng, Zhong Wan, Yanjiu Zhou. Optimization model and solution method for dynamically correlated two-product newsvendor problems based on Copula. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020096

[16]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[17]

Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007

[18]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018188

[19]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[20]

Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]