\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized weak sharp minima of variational inequality problems with functional constraints

Abstract Related Papers Cited by
  • In this paper, the notion of generalized weak sharp minima is introduced for variational inequality problems with functional constraints in finite-dimensional spaces by virtue of a dual gap function. Some equivalent and necessary conditions for the solution set of the variational inequality problems to be a set of generalized weak sharp minima are obtained.
    Mathematics Subject Classification: 49J40, 49K99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Auslender, Asymptotic analysis for penalty and barrier methods in variational inequalities, SIAM J. Control Optim., 37 (1999), 653-671.doi: 10.1137/S0363012996310909.

    [2]

    A. Auslender, Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone, Optim. Methods Softw., 18 (2003), 359-376.doi: 10.1080/1055678031000122586.

    [3]

    J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problem," Springer-Verlag, New York, 2000.

    [4]

    J. V. Burke and S. Deng, Weak sharp minima revisited, part I: Basic theory, Control and Cybernetics, 31 (2002), 439-469.

    [5]

    J. V. Burke and S. Deng, Weak sharp minima revisited, part II: Application to linear regularity and error bounds, Math. Program., Ser. B, 104 (2005), 235-261.doi: 10.1007/s10107-005-0615-2.

    [6]

    J. V. Burke and S. Deng, Weak sharp minima revisited, part III: Error bounds for differentiable convex inclusions, Math. Program., Ser. B, 116 (2009), 37-56.doi: 10.1007/s10107-007-0130-8.

    [7]

    J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control and Optim., 31 (1993), 1340-1359.doi: 10.1137/0331063.

    [8]

    J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite optimaztion, Math. Program., 71 (1995), 179-194.doi: 10.1007/BF01585997.

    [9]

    J. M. Danskin, The theory of min-max with applications, SIAM J. Appl. Math., 14 (1966), 641-664.doi: 10.1137/0114053.

    [10]

    S. Deng and X. Q. Yang, Weak sharp minima in multicriteria linear programming, SIAM J. Optim., 15 (2004), 456-460.doi: 10.1137/S1052623403434401.

    [11]

    S. Deng, Some remarks on finite termination of descent methods, Pacific Journal of Optimization, 1 (2005), 19-25.

    [12]

    M. C. Ferris, "Weak Sharp Minima and Penalty Functions in Mathematical Programming," Ph. D thesis, Universiy of Cambridge, Cambridge, 1988.

    [13]

    M. C. Ferris, Iterative linear programming solution of convex programs, J. Optim. Therory Appl., 65 (1990), 53-65.doi: 10.1007/BF00941159.

    [14]

    M. C. Ferris, Finite termination of the proximal point algorithm, Math. Program., 50 (1991), 359-366.doi: 10.1007/BF01594944.

    [15]

    R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions, J. Math. Anal. Appl., 258 (2001), 110-103.doi: 10.1006/jmaa.2000.7363.

    [16]

    P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Program., 48 (1990), 161-220.doi: 10.1007/BF01582255.

    [17]

    B. S. He, H. Yang and C. S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities, Eur. J. Oper. Res., 159 (2004), 35-51.doi: 10.1016/S0377-2217(03)00385-0.

    [18]

    X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints, J. Ind. Manag. Optim., 3 (2007), 671-684.doi: 10.3934/jimo.2007.3.671.

    [19]

    A. S. Lewis and J. S. Pang, Error bounds for convex inequality systems, in "Proceedings of the Fifth Symposium on Generalized Convexity" (ed. J. P. Crouzeix), Luminy-Marseille, (1996).doi: 10.1007/978-1-4613-3341-8_3.

    [20]

    C. Li and X. Wang, On convergence of the gauss-Netow method of convex composite optimization, Math. Program., 91 (2002), 349-356.doi: 10.1007/s101070100249.

    [21]

    Laura J. Kettner and S. Deng, On well-posedness and hausdorff convergence of solution sets of vector optimization problems, J. Optim. Theory Appl., 153 (2012), 619-632.doi: 10.1007/s10957-011-9947-7.

    [22]

    M. Studniarski, Weak sharp minima in multiobjective optimiation, Control and Cybernetics, 36 (2007), 925-936.

    [23]

    M. Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming, in "System Modelling and Optimization", Chapman Hall/CRC Res. Notes Math. 396 (1999), 207-215.

    [24]

    P. Marcotte and D. L. Zhu, Weak sharp solutions of variational inequalities, SIAM J. Optim., 9 (1998), 179-189.doi: 10.1137/S1052623496309867.

    [25]

    P. Marcotte and D. L. Zhu, Erratum: Weak sharp solutions of variational inequalities, SIAM J. Optim., 10 (2000), 942-942.doi: 10.1137/S1052623499360616.

    [26]

    B. T. Polyak and Sharp Minima, Institue of control sciences lecture notes, Moscow, USSR, 1979; Presented at the IIASA workshop om generalized lagrangians and their applications, IIASA, Laxenburg, Austria, 1979.

    [27]

    Z. L. Wu and S. Y. Wu, Weak sharp solutions of variational inequalities in Hilbert spaces, SIAM J. Optim., 14 (2004), 1011-1027.doi: 10.1137/S1052623403421486.

    [28]

    Z. L. Wu and S. Y. Wu, Gâteaux differentiability of the dual gap function of a variational inequality, Eur. J. Oper. Res., 190 (2008), 328-344.doi: 10.1016/j.ejor.2007.06.024.

    [29]

    X. Y. Zheng and X. Q. Yang, Weak sharp minima for semi-infinite optimization problems with applications, SIAM J. Optim., 18 (2007), 573-588.doi: 10.1137/060670213.

    [30]

    X. Y. Zheng and X. Q. Yang, Global weak sharp minima for convex (semi-)infinite optimization problems, J. Math. Anal. Appl., 348 (2008), 1021-1028.doi: 10.1016/j.jmaa.2008.07.052.

    [31]

    X. Y. Zheng and X. Q. Yang, Weak sharp minima for piecewise linear multiobjective optimization in normed spaces, Nonlinear Anal., 68 (2008), 3771-3779.doi: 10.1016/j.na.2007.04.018.

    [32]

    X. Y. Zheng and K. F. Ng, Strong KKT conditions and weak sharp minima in convex-composite optimization, Math. Program., Ser. A, published online, April 17, (2009).

    [33]

    J. Z. Zhang, C. Y. Wang and N. H. Xiu, The dual gap function for variational inequalities, Appl. Math. Optim., 48 (2003), 129-148.doi: 10.1007/s00245-003-0771-9.

    [34]

    T. Larsson and M. Patriksson, A class of gap functions for variational inequalities, Math. Program., 64 (1994), 53-80.doi: 10.1007/BF01582565.

    [35]

    P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math., 105 (1966), 271-310.doi: 10.1007/BF02392210.

    [36]

    F. H. Clarke, "Optimization and Nonsmooth Analysis," John Wiley Sons, New York, 1983.

    [37]

    R. T. Rockafellar, "Convex Analysis, Princeton University Press," Princeton, 1970.

    [38]

    R. T. Rockafellar, "Conjugate Duality and Optimization," SIAM, 1974.

    [39]

    S. S. Chang, "Variational Inequality and Complementarity Problem Theory with Applications," Shanghai Sci. and Tech. Literature Publishing House, Shanghai, 1991.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return