-
Previous Article
Multi-period mean-variance portfolio selection with fixed and proportional transaction costs
- JIMO Home
- This Issue
-
Next Article
Generalized weak sharp minima of variational inequality problems with functional constraints
Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements
1. | School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China |
2. | School of Mathematical Sciences, South China Normal University, Guangzhou 510631 |
References:
[1] |
N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201-229.
doi: 10.1023/A:1020576801966. |
[2] |
R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 39 (2000), 113-132.
doi: 10.1137/S0363012999351097. |
[3] |
F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-3172-1. |
[4] |
E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, in "Analysis and Optimization of Differential Systems," Kluwer Academic Publishers, (2003), 89-100. |
[5] |
Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 77 (2008), 1269-1291.
doi: 10.1090/S0025-5718-08-02104-2. |
[6] |
Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Inter. J. Numer. Meths. Eng., 75 (2008), 881-898.
doi: 10.1002/nme.2272. |
[7] |
Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42 (2009), 382-403.
doi: 10.1007/s10915-009-9327-8. |
[8] |
Y. Chen and Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206-221.
doi: 10.1007/s10915-008-9258-9. |
[9] |
P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," North-Holland, Amsterdam, 1978. |
[10] |
P. Grisvard, "Elliptic Problems in Nonsmooth Domains," Pitman, Boston-London-Melbourne, 1985. |
[11] |
J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 44 (1985), 39-52.
doi: 10.2307/2007791. |
[12] |
F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47. |
[13] |
T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer., 13 (1979), 313-328. |
[14] |
R. Li, W. B. Liu, H. P. Ma and T. Tang, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 41 (2002), 1321-1349.
doi: 10.1137/S0363012901389342. |
[15] |
R. Li and W., Liu, http://dsec.pku.edu.cn/~rli/. |
[16] |
J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Springer-Verlag, Berlin, 1971. |
[17] |
W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 15 (2001), 285-309.
doi: 10.1023/A:1014239012739. |
[18] |
C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), 970-985.
doi: 10.1137/S0363012903431608. |
[19] |
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in "Aspects of the Finite Element Method" Springer, (1977), 292-315. |
[20] |
A. Rösch and R. Simon, Linear and discontinuous approximations for optimal control problems, Numer. Funct. Anal. Optim., 26 (2005), 427-448.
doi: 10.1081/NFA-200067309. |
show all references
References:
[1] |
N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201-229.
doi: 10.1023/A:1020576801966. |
[2] |
R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 39 (2000), 113-132.
doi: 10.1137/S0363012999351097. |
[3] |
F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-3172-1. |
[4] |
E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, in "Analysis and Optimization of Differential Systems," Kluwer Academic Publishers, (2003), 89-100. |
[5] |
Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 77 (2008), 1269-1291.
doi: 10.1090/S0025-5718-08-02104-2. |
[6] |
Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Inter. J. Numer. Meths. Eng., 75 (2008), 881-898.
doi: 10.1002/nme.2272. |
[7] |
Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42 (2009), 382-403.
doi: 10.1007/s10915-009-9327-8. |
[8] |
Y. Chen and Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206-221.
doi: 10.1007/s10915-008-9258-9. |
[9] |
P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," North-Holland, Amsterdam, 1978. |
[10] |
P. Grisvard, "Elliptic Problems in Nonsmooth Domains," Pitman, Boston-London-Melbourne, 1985. |
[11] |
J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 44 (1985), 39-52.
doi: 10.2307/2007791. |
[12] |
F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47. |
[13] |
T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer., 13 (1979), 313-328. |
[14] |
R. Li, W. B. Liu, H. P. Ma and T. Tang, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 41 (2002), 1321-1349.
doi: 10.1137/S0363012901389342. |
[15] |
R. Li and W., Liu, http://dsec.pku.edu.cn/~rli/. |
[16] |
J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Springer-Verlag, Berlin, 1971. |
[17] |
W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 15 (2001), 285-309.
doi: 10.1023/A:1014239012739. |
[18] |
C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), 970-985.
doi: 10.1137/S0363012903431608. |
[19] |
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in "Aspects of the Finite Element Method" Springer, (1977), 292-315. |
[20] |
A. Rösch and R. Simon, Linear and discontinuous approximations for optimal control problems, Numer. Funct. Anal. Optim., 26 (2005), 427-448.
doi: 10.1081/NFA-200067309. |
[1] |
Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927 |
[2] |
Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control and Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041 |
[3] |
Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034 |
[4] |
Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control and Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183 |
[5] |
Evelyn Herberg, Michael Hinze. Variational discretization of one-dimensional elliptic optimal control problems with BV functions based on the mixed formulation. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022013 |
[6] |
Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 |
[7] |
Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807 |
[8] |
Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053 |
[9] |
Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control and Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014 |
[10] |
Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641 |
[11] |
Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295 |
[12] |
Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689 |
[13] |
Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems and Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795 |
[14] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[15] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29 (3) : 2489-2516. doi: 10.3934/era.2020126 |
[16] |
Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control and Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 |
[17] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29 (3) : 2517-2532. doi: 10.3934/era.2020127 |
[18] |
Thi-Thao-Phuong Hoang. Optimized Ventcel-Schwarz waveform relaxation and mixed hybrid finite element method for transport problems. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022060 |
[19] |
G. Bonanno, Salvatore A. Marano. Highly discontinuous elliptic problems. Conference Publications, 1998, 1998 (Special) : 118-123. doi: 10.3934/proc.1998.1998.118 |
[20] |
Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]