July  2013, 9(3): 631-642. doi: 10.3934/jimo.2013.9.631

Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631

Received  April 2012 Revised  March 2013 Published  April 2013

In this paper, we investigate the superconvergence property of a quadratic elliptic control problem with pointwise control constraints. The state and the co-state variables are approximated by the Raviart-Thomas mixed finite element of order $k=1$ and the control variable is discretized by piecewise linear but discontinuous functions. Approximations of the optimal solution of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order $h^{2}$.
Citation: Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial and Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631
References:
[1]

N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201-229. doi: 10.1023/A:1020576801966.

[2]

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 39 (2000), 113-132. doi: 10.1137/S0363012999351097.

[3]

F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.

[4]

E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, in "Analysis and Optimization of Differential Systems," Kluwer Academic Publishers, (2003), 89-100.

[5]

Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 77 (2008), 1269-1291. doi: 10.1090/S0025-5718-08-02104-2.

[6]

Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Inter. J. Numer. Meths. Eng., 75 (2008), 881-898. doi: 10.1002/nme.2272.

[7]

Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42 (2009), 382-403. doi: 10.1007/s10915-009-9327-8.

[8]

Y. Chen and Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206-221. doi: 10.1007/s10915-008-9258-9.

[9]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," North-Holland, Amsterdam, 1978.

[10]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains," Pitman, Boston-London-Melbourne, 1985.

[11]

J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 44 (1985), 39-52. doi: 10.2307/2007791.

[12]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47.

[13]

T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer., 13 (1979), 313-328.

[14]

R. Li, W. B. Liu, H. P. Ma and T. Tang, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 41 (2002), 1321-1349. doi: 10.1137/S0363012901389342.

[15]

R. Li and W., Liu, http://dsec.pku.edu.cn/~rli/.

[16]

J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Springer-Verlag, Berlin, 1971.

[17]

W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 15 (2001), 285-309. doi: 10.1023/A:1014239012739.

[18]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), 970-985. doi: 10.1137/S0363012903431608.

[19]

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in "Aspects of the Finite Element Method" Springer, (1977), 292-315.

[20]

A. Rösch and R. Simon, Linear and discontinuous approximations for optimal control problems, Numer. Funct. Anal. Optim., 26 (2005), 427-448. doi: 10.1081/NFA-200067309.

show all references

References:
[1]

N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201-229. doi: 10.1023/A:1020576801966.

[2]

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 39 (2000), 113-132. doi: 10.1137/S0363012999351097.

[3]

F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.

[4]

E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, in "Analysis and Optimization of Differential Systems," Kluwer Academic Publishers, (2003), 89-100.

[5]

Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 77 (2008), 1269-1291. doi: 10.1090/S0025-5718-08-02104-2.

[6]

Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Inter. J. Numer. Meths. Eng., 75 (2008), 881-898. doi: 10.1002/nme.2272.

[7]

Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42 (2009), 382-403. doi: 10.1007/s10915-009-9327-8.

[8]

Y. Chen and Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206-221. doi: 10.1007/s10915-008-9258-9.

[9]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," North-Holland, Amsterdam, 1978.

[10]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains," Pitman, Boston-London-Melbourne, 1985.

[11]

J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 44 (1985), 39-52. doi: 10.2307/2007791.

[12]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47.

[13]

T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer., 13 (1979), 313-328.

[14]

R. Li, W. B. Liu, H. P. Ma and T. Tang, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 41 (2002), 1321-1349. doi: 10.1137/S0363012901389342.

[15]

R. Li and W., Liu, http://dsec.pku.edu.cn/~rli/.

[16]

J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Springer-Verlag, Berlin, 1971.

[17]

W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 15 (2001), 285-309. doi: 10.1023/A:1014239012739.

[18]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), 970-985. doi: 10.1137/S0363012903431608.

[19]

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in "Aspects of the Finite Element Method" Springer, (1977), 292-315.

[20]

A. Rösch and R. Simon, Linear and discontinuous approximations for optimal control problems, Numer. Funct. Anal. Optim., 26 (2005), 427-448. doi: 10.1081/NFA-200067309.

[1]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[2]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control and Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[3]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[4]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control and Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[5]

Evelyn Herberg, Michael Hinze. Variational discretization of one-dimensional elliptic optimal control problems with BV functions based on the mixed formulation. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022013

[6]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[7]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[8]

Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053

[9]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control and Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[10]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[11]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[12]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[13]

Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems and Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795

[14]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[15]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29 (3) : 2489-2516. doi: 10.3934/era.2020126

[16]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control and Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[17]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29 (3) : 2517-2532. doi: 10.3934/era.2020127

[18]

Thi-Thao-Phuong Hoang. Optimized Ventcel-Schwarz waveform relaxation and mixed hybrid finite element method for transport problems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022060

[19]

G. Bonanno, Salvatore A. Marano. Highly discontinuous elliptic problems. Conference Publications, 1998, 1998 (Special) : 118-123. doi: 10.3934/proc.1998.1998.118

[20]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]