-
Previous Article
Optimality conditions for vector equilibrium problems and their applications
- JIMO Home
- This Issue
-
Next Article
Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements
Multi-period mean-variance portfolio selection with fixed and proportional transaction costs
1. | Department of Mathematics, Xidian University, Xi'an, 710071, China, China |
References:
[1] |
M. Akian, J. Menaldi and A. Sulem, On an investment-consumption model with transaction costs,, Journal of Control and Optimization, 34 (1996), 329.
doi: 10.1137/S0363012993247159. |
[2] |
A. Balbas and S. Mayral, Nonconvex optimization for pricing and hedging in imperfect markets,, Computers and Mathematics with Applications, 52 (2006), 121.
doi: 10.1016/j.camwa.2006.08.009. |
[3] |
D. Bertsimas and D. Pachamanova, Robust multiperiod portfolio management in the presence of transaction costs,, Computers and Operations Research, 35 (2008), 3.
doi: 10.1016/j.cor.2006.02.011. |
[4] |
M. Best and J. Hlouskova, Quadratic programming with transaction costs,, Computers $&$ Operations Research, 35 (2008), 18.
doi: 10.1016/j.cor.2006.02.013. |
[5] |
P. Boyle and X. Lin, Portfolio selection with transaction costs,, North American Actuarial Journal, 1 (1997), 27.
doi: 10.1080/10920277.1997.10595602. |
[6] |
T. Chellathurai and T. Draviam, Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory,, Journal of Economic Dynamics $&$ Control, 31 (2007), 2168.
doi: 10.1016/j.jedc.2006.06.006. |
[7] |
U. Çlikyurt and S. Ökici, Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach,, European Journal of Operational Research, 179 (2007), 186. Google Scholar |
[8] |
G. Constantinides, Optimal portfolio revision with proportional transaction costs: Extension to hara utility function and exogenous deterministic income,, Management Science, 22 (1976), 921.
doi: 10.1287/mnsc.22.8.921. |
[9] |
M. Davis and A. Norman, Portfolio selection with transaction costs,, Mathematics of Operations Research, 15 (1990), 676.
doi: 10.1287/moor.15.4.676. |
[10] |
N. Framstad, B. Øksendal and A. Sulem, Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs,, Journal of Mathematical Economics, 35 (2001), 233.
doi: 10.1016/S0304-4068(00)00067-7. |
[11] |
G. Gennotte and A. Jung, Investment strategies under transaction costs: The finite horizon case,, Management Science, 40 (1994), 385.
doi: 10.1287/mnsc.40.3.385. |
[12] |
B. Jang, Optimal portfolio selection with transaction costs when an illiquid asset pays cash dividends,, Journal of the Korean Mathematical Society, 44 (2007), 139.
doi: 10.4134/JKMS.2007.44.1.139. |
[13] |
J. Kamin, Optimal portfolio revision with a proportional transaction cost,, Management Science, 21 (1975), 1263.
doi: 10.1287/mnsc.21.11.1263. |
[14] |
H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to tokyo stock market,, Management Science, 37 (1991), 519.
doi: 10.1287/mnsc.37.5.519. |
[15] |
D. G. Luenberger, "Opitimization by Vector Space Methods,", Wiley, (1968).
|
[16] |
H. Markowitz, "Mean-Variance Analysis in Portfolio Choice and Capital Markets,", Blackwell, (1992).
|
[17] |
R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, Review of Economics and Statistics, 51 (1969), 247.
doi: 10.2307/1926560. |
[18] |
K. Muthuraman, A computational scheme for optimal investment-consumption with proportional transaction costs,, Journal of Economic Dynamics $&$ Control, 31 (2007), 1132.
doi: 10.1016/j.jedc.2006.04.005. |
[19] |
P. Samuelson, Lifetime portfolio selection by dynamic stochastic programming,, Review of Economics and Statistics, 51 (1969), 239.
doi: 10.2307/1926559. |
[20] |
M. Woodside-Oriakhi, C. Lucas and J. E. Beasley, Portfolio rebalancing with an investment horizon and transaction costs,, Omega, 41 (2013), 406.
doi: 10.1016/j.omega.2012.03.003. |
[21] |
H. Yao, A simple method for solving multiperiod mean-variance asset-liability management problem,, Procedia Engineering, 23 (2011), 387.
doi: 10.1016/j.proeng.2011.11.2518. |
[22] |
L. Yi, Z. Li and D. Li, Multi-period portfolio selection for asset-liability management with uncertain investment horizon,, Journal of Industrial and Management Optimization, 4 (2008), 535.
doi: 10.3934/jimo.2008.4.535. |
[23] |
M. Yu, S. Takahashib, H. Inoueb and S. Wang, Dynamic portfolio optimization with risk control for absolute deviation model,, European Journal of Operational Research, 201 (2010), 349.
doi: 10.1016/j.ejor.2009.03.009. |
show all references
References:
[1] |
M. Akian, J. Menaldi and A. Sulem, On an investment-consumption model with transaction costs,, Journal of Control and Optimization, 34 (1996), 329.
doi: 10.1137/S0363012993247159. |
[2] |
A. Balbas and S. Mayral, Nonconvex optimization for pricing and hedging in imperfect markets,, Computers and Mathematics with Applications, 52 (2006), 121.
doi: 10.1016/j.camwa.2006.08.009. |
[3] |
D. Bertsimas and D. Pachamanova, Robust multiperiod portfolio management in the presence of transaction costs,, Computers and Operations Research, 35 (2008), 3.
doi: 10.1016/j.cor.2006.02.011. |
[4] |
M. Best and J. Hlouskova, Quadratic programming with transaction costs,, Computers $&$ Operations Research, 35 (2008), 18.
doi: 10.1016/j.cor.2006.02.013. |
[5] |
P. Boyle and X. Lin, Portfolio selection with transaction costs,, North American Actuarial Journal, 1 (1997), 27.
doi: 10.1080/10920277.1997.10595602. |
[6] |
T. Chellathurai and T. Draviam, Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory,, Journal of Economic Dynamics $&$ Control, 31 (2007), 2168.
doi: 10.1016/j.jedc.2006.06.006. |
[7] |
U. Çlikyurt and S. Ökici, Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach,, European Journal of Operational Research, 179 (2007), 186. Google Scholar |
[8] |
G. Constantinides, Optimal portfolio revision with proportional transaction costs: Extension to hara utility function and exogenous deterministic income,, Management Science, 22 (1976), 921.
doi: 10.1287/mnsc.22.8.921. |
[9] |
M. Davis and A. Norman, Portfolio selection with transaction costs,, Mathematics of Operations Research, 15 (1990), 676.
doi: 10.1287/moor.15.4.676. |
[10] |
N. Framstad, B. Øksendal and A. Sulem, Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs,, Journal of Mathematical Economics, 35 (2001), 233.
doi: 10.1016/S0304-4068(00)00067-7. |
[11] |
G. Gennotte and A. Jung, Investment strategies under transaction costs: The finite horizon case,, Management Science, 40 (1994), 385.
doi: 10.1287/mnsc.40.3.385. |
[12] |
B. Jang, Optimal portfolio selection with transaction costs when an illiquid asset pays cash dividends,, Journal of the Korean Mathematical Society, 44 (2007), 139.
doi: 10.4134/JKMS.2007.44.1.139. |
[13] |
J. Kamin, Optimal portfolio revision with a proportional transaction cost,, Management Science, 21 (1975), 1263.
doi: 10.1287/mnsc.21.11.1263. |
[14] |
H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to tokyo stock market,, Management Science, 37 (1991), 519.
doi: 10.1287/mnsc.37.5.519. |
[15] |
D. G. Luenberger, "Opitimization by Vector Space Methods,", Wiley, (1968).
|
[16] |
H. Markowitz, "Mean-Variance Analysis in Portfolio Choice and Capital Markets,", Blackwell, (1992).
|
[17] |
R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, Review of Economics and Statistics, 51 (1969), 247.
doi: 10.2307/1926560. |
[18] |
K. Muthuraman, A computational scheme for optimal investment-consumption with proportional transaction costs,, Journal of Economic Dynamics $&$ Control, 31 (2007), 1132.
doi: 10.1016/j.jedc.2006.04.005. |
[19] |
P. Samuelson, Lifetime portfolio selection by dynamic stochastic programming,, Review of Economics and Statistics, 51 (1969), 239.
doi: 10.2307/1926559. |
[20] |
M. Woodside-Oriakhi, C. Lucas and J. E. Beasley, Portfolio rebalancing with an investment horizon and transaction costs,, Omega, 41 (2013), 406.
doi: 10.1016/j.omega.2012.03.003. |
[21] |
H. Yao, A simple method for solving multiperiod mean-variance asset-liability management problem,, Procedia Engineering, 23 (2011), 387.
doi: 10.1016/j.proeng.2011.11.2518. |
[22] |
L. Yi, Z. Li and D. Li, Multi-period portfolio selection for asset-liability management with uncertain investment horizon,, Journal of Industrial and Management Optimization, 4 (2008), 535.
doi: 10.3934/jimo.2008.4.535. |
[23] |
M. Yu, S. Takahashib, H. Inoueb and S. Wang, Dynamic portfolio optimization with risk control for absolute deviation model,, European Journal of Operational Research, 201 (2010), 349.
doi: 10.1016/j.ejor.2009.03.009. |
[1] |
Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483-496. doi: 10.3934/jimo.2010.6.483 |
[2] |
Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018166 |
[3] |
Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018189 |
[4] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019133 |
[5] |
Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521 |
[6] |
Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045 |
[7] |
Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041 |
[8] |
Peng Zhang. Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection. Journal of Industrial & Management Optimization, 2019, 15 (2) : 537-564. doi: 10.3934/jimo.2018056 |
[9] |
Zhifeng Dai, Huan Zhu, Fenghua Wen. Two nonparametric approaches to mean absolute deviation portfolio selection model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019054 |
[10] |
Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019094 |
[11] |
Yanqin Bai, Yudan Wei, Qian Li. An optimal trade-off model for portfolio selection with sensitivity of parameters. Journal of Industrial & Management Optimization, 2017, 13 (2) : 947-965. doi: 10.3934/jimo.2016055 |
[12] |
Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial & Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187 |
[13] |
Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167 |
[14] |
Peng Zhang. Multiperiod mean semi-absolute deviation interval portfolio selection with entropy constraints. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1169-1187. doi: 10.3934/jimo.2016067 |
[15] |
Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343 |
[16] |
Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475 |
[17] |
Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial & Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33 |
[18] |
Yufei Sun, Ee Ling Grace Aw, Bin Li, Kok Lay Teo, Jie Sun. CVaR-based robust models for portfolio selection. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2019032 |
[19] |
Li Xue, Hao Di. Uncertain portfolio selection with mental accounts and background risk. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1809-1830. doi: 10.3934/jimo.2018124 |
[20] |
Nan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Markowitz's mean-variance optimization with investment and constrained reinsurance. Journal of Industrial & Management Optimization, 2017, 13 (1) : 375-397. doi: 10.3934/jimo.2016022 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]