Citation: |
[1] |
L. Q. Anh, P. Q. Khanh, D. T. M. Van and J. C. Yao, Well-posedness for vector quasiequilibria, Taiwanese J. Math., 13 (2009), 713-737. |
[2] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, On generalized vector equilibrium problems, Nonlinear Anal., 47 (2001), 543-554.doi: 10.1016/S0362-546X(01)00199-7. |
[3] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems, J. Optim. Theory Appl., 110 (2001), 481-492.doi: 10.1023/A:1017581009670. |
[4] |
Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations of solutions for vector equilibrium problems, J. Optim. Theory Appl., 113 (2002), 435-447.doi: 10.1023/A:1015366419163. |
[5] |
Q. H. Ansari, W. Oettli and D. Schläger, A generalization of vectorial equilibria, Math. Meth. Oper. Res., 46 (1997), 147-152.doi: 10.1007/BF01217687. |
[6] |
Q. H. Ansari, X. Q. Yang and J. C. Yao, Existence and duality of implicit vector variational problems, Numer. Funct. Anal. Optim., 22 (2001), 815-829.doi: 10.1081/NFA-100108310. |
[7] |
M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl., 92 (1997), 527-542.doi: 10.1023/A:1022603406244. |
[8] |
M. Bianchi, G. Kassay and R. Pini, Ekeland's principle for vector equilibrium problems, Nonlinear Anal., 66 (2007), 1454-1464.doi: 10.1016/j.na.2006.02.003. |
[9] |
M. Bianchi, G. Kassay and R. Pini, Well-posedness for vector equilibrium problems, Math. Meth. Oper. Res., 70 (2009), 171-182.doi: 10.1007/s00186-008-0239-4. |
[10] |
G. Bigi, A. Capătă and G. Kassay, Existence results for strong vector equilibrium problems and their applications, Optimization, 61 (2012), 567-583.doi: 10.1080/02331934.2010.528761. |
[11] |
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123-145. |
[12] |
J. M. Borwein and R. Goebel, Notions of relative interior in Banach spaces, J. Math. Sci., 115 (2003), 2542-2553.doi: 10.1023/A:1022988116044. |
[13] |
J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory, Math. Prog., 57 (1992), 15-48.doi: 10.1007/BF01581072. |
[14] |
J. M. Borwein and V. Jeyakumar, On convexlike Lagrangian and minimax theorems, Research Report 24, University of Waterloo, (1988). |
[15] |
F. Cammaroto and B. Di Bella, Separation theorem based on the quasirelative interior and application to duality theory, J. Optim. Theory Appl., 125 (2005), 223-229.doi: 10.1007/s10957-004-1724-4. |
[16] |
A. Capătă and G. Kassay, On vector equilibrium problems and applications, Taiwanese J. Math., 15 (2011), 365-380. |
[17] |
A. Capătă , Optimality conditions for extended Ky Fan inequality with cone and affine constraints and their applications, J. Optim. Theory. Appl., 152 (2012), 661-674.doi: 10.1007/s10957-011-9916-1. |
[18] |
P. Daniele, S. Giuffrè and A. Maugeri, Infinite dimensional duality and applications, Math. Ann., 339 (2007), 221-239.doi: 10.1007/s00208-007-0118-y. |
[19] |
K. Fan, Minimax theorems, Proc. National Acad. Sci. USA, 39 (1953), 42-47.doi: 10.1073/pnas.39.1.42. |
[20] |
K. Fan, A minimax inequality and applications, in "Inequality III" (ed. O. Shisha), Academic Press, New York, (1972), 103-113. |
[21] |
F. Giannessi, "Vector Variational Inequalities and Vector Equilibria," Kluwer Academic Publishers, Dordrecht, 2000.doi: 10.1007/978-1-4613-0299-5. |
[22] |
X. H. Gong, Optimality conditions for vector equilibrium problems, J. Math. Anal. Appl., 342 (2008), 1455-1466.doi: 10.1016/j.jmaa.2008.01.026. |
[23] |
R. B. Holmes, "Geometric Functional Analysis and its Applications," Springer-Verlag, Berlin, 1975. |
[24] |
K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems, Taiwanese J. Math., 12 (2008), 649-669. |
[25] |
K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric generalized quasi vector equilibrium problems, Taiwanese J. Math., 12 (2008), 2233-2268. |
[26] |
M. A. Limber and R. K. Goodrich, Quasi interiors, Lagrange multipliers and $L^p$ spectral estimation with lattice bounds, J. Optim. Theory Appl., 78 (1993), 143-161.doi: 10.1007/BF00940705. |
[27] |
B. C. Ma and X. H. Gong, Optimality conditions for vector equilibrium problems in normed spaces, Optimization, 60 (2011), 1441-1455.doi: 10.1080/02331931003657709. |
[28] |
Q. Qiu, Optimality conditions of globally efficient solutions for vector equilibrium problems with generalized convexity, J. Ineq. Appl., (2009).doi: 10.1155/2009/898213. |
[29] |
Q. S. Qiu, Optimality conditions for vector equilibrium problems with constraints, J. Ind. Manag. Optim., 5 (2009), 783-790.doi: 10.3934/jimo.2009.5.783. |
[30] |
R. T. Rockafellar, "Conjugate Duality and Optimization," Society for Industrial and Applied Mathematics, Philadelphia, 1974. |
[31] |
J. Salamon, Closedness and Hadamard well-posedness of the solution map for parametric vector equilibrium problems, J. Global Optim., 47 (2010), 173-183.doi: 10.1007/s10898-009-9464-5. |
[32] |
C. Zălinescu, "Convex Analysis in General Vector Spaces," World Scientific, Singapore, 2002.doi: 10.1142/9789812777096. |