 Previous Article
 JIMO Home
 This Issue

Next Article
Convex hull of the orthogonal similarity set with applications in quadratic assignment problems
Computable representation of the cone of nonnegative quadratic forms over a general secondorder cone and its application to completely positive programming
1.  School of Business Administration, Southwestern University of Finance and Economics, Chengdu, 611130, China 
2.  Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27606, United States, United States 
3.  Department of Mathematical Sciences, Tsinghua University, Beijing 
References:
[1] 
K. Anstreicher, Semidefinite programming versus the ReformulationLinearization Technique for nonconvex quadratically constrained quadratic programming, Journal of Global Optimization, 43 (2009), 471484. doi: 10.1007/s1089800893720. 
[2] 
A. BenTal and A. Nemirovski, "Lectures on Modern Convex Optimization Analysis, Algorithms and Engineering Applications," SIAM, Philadelphis, 2001. doi: 10.1137/1.9780898718829. 
[3] 
I. Bomze and E. de Klerk, Solving standard quadratic optimization problem via linear, semidefinite and copositive programming, Journal of Global Optimization, 24 (2002), 163185. doi: 10.1023/A:1020209017701. 
[4] 
I. Bomze and G. Eichfelder, Copositivity Detection by differenceofconvex decomposition and $\omega$subdivision,, to appear in Mathematical Programming., (). doi: 10.1007/s101070120543x. 
[5] 
I. Bomze, F. Jarre and F. Rendl, Quadratic factorization heuristics for copositive programming, Mathematical Programming Computation, 3 (2011), 3757. doi: 10.1007/s125320110022z. 
[6] 
M. Brockington and J. Culberson, "Camouflaging Independent Sets in Quasirandom Graphs," Clique Coloring and Satisfiability: Second DIMACS Implementation Challenge, 26, Amer Mathematical Society, 1994. 
[7] 
S. Bundfuss and M. Dür, An adaptive linear approximation algorithm for copositive programs, SIAM Journal on Optimization, 20 (2009), 3053. doi: 10.1137/070711815. 
[8] 
S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs, Mathematical Programming, 120 (2009), 479495. doi: 10.1007/s101070080223z. 
[9] 
S. Burer and K. Anstreicher, Secondorder cone constraints for extended trustregion subproblems, submitted to SIAM Journal on Optimization, (2011). doi: 10.1137/110826862. 
[10] 
Z. Deng, S.C. Fang, Q. Jin and W. Xing, Detecting copositivity of a symmetric matrix by an adaptive ellipsoidbased approximation scheme, accepted by European Journal of Operational Research, (2013). doi: 10.1016/j.ejor.2013.02.031. 
[11] 
, DIMACS Implementation Challenges., , (). 
[12] 
M. Dür, "Copositive Programming: A Survey," Recent Advances in Optimization and Its Application in Engineering, Springer, New York, 2012. 
[13] 
N. Govozdenovic and M. Laurent, The operator $\Psi$ for the chromatic number of a graph, SIAM Journal on Optimization, 19 (2008), 572591. doi: 10.1137/050648237. 
[14] 
M. Grant and S. Boyd, "CVX: matlab Software for Disciplined Programming," version 1.2, 2010. http://cvxr.com/cvx 
[15] 
P. Hansen, B. Jaumard, M. Ruiz and J. Xiong, Global minimization of indefinite quadratic functions subject to box constraints, Naval Research Logistics, 40 (1993), 373392. doi: 10.1002/15206750(199304)40:3<373::AIDNAV3220400307>3.0.CO;2A. 
[16] 
K. Ikramov, Lineartime algorithm for verifying the copositivity of an acyclic matrix, Computational Mathematics and Mathmetical Physics, 42 (2002), 17011703. 
[17] 
E. de Klerk and D. Pasechnik, Approximation of the stability number of a graph via copositive programming, Journal of Global Optimization, 12 (2002), 875892. doi: 10.1137/S1052623401383248. 
[18] 
C. Lu, S.C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems, SIAM Journal on Optimization, 21 (2010), 14751490. doi: 10.1137/100793955. 
[19] 
C. Lu, Q. Jin, S.C. Fang, Z. Wang and W. Xing, An LMI based adaptive approximation scheme to cones of nonnegative quadratic functions, Submitted to Mathematical Programming, (2011). 
[20] 
T. Motzkin and E. Straus, Maxima for graphs and a new proof of a theorem of Turan, Canadian Journal of Mathematics, 17 (1965), 533540. doi: 10.4153/CJM19650536. 
[21] 
K. Murty and S. Kabadi, Some NPcomplete problems in quadratic and nonlinear programming, Mathematical Programming, 39 (1987), 117129. doi: 10.1007/BF02592948. 
[22] 
J. Povh and F. Rendl, Copositive and semidefinite relaxations of the quadratic assignment problem, Discrete Optimization, 6 (2009), 231241. doi: 10.1016/j.disopt.2009.01.002. 
[23] 
J. Preisig, Copositivity and the minimization of quadratic functions with nonnegativity and quadratic equality constraints, SIAM Journal on Control and Optimization, 34 (1996), 11351150. doi: 10.1137/S0363012993251894. 
[24] 
R. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1996. 
[25] 
N. Sahinidis and M. Tawarmalani, "BARON 9.0.4: Global Optimization of MixedInteger Nonlinear Programs,", 2010. , (). 
[26] 
L. Sanchis, Test case construction for the vertex cover problem, in "Computational Support for Discrete Mathematics," DIMACS Series in Discrete Mathematics and Theoretical American Mathematical Society, 15 (1992), Providence, Rhodle Island, (1992). 
[27] 
J. Sturm, SeDuMi 1.02, a matlab tool box for optimization over symmetric cones, Optimization Methods and Software, 11$&$12 (1999), 625653. doi: 10.1080/10556789908805766. 
[28] 
J. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246267. doi: 10.1287/moor.28.2.246.14485. 
[29] 
Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245267. doi: 10.1137/S105262340139001X. 
[30] 
J. Žilinskas, Copositive programming by simplicial partition, Informatica, 22 (2011), 601614. 
show all references
References:
[1] 
K. Anstreicher, Semidefinite programming versus the ReformulationLinearization Technique for nonconvex quadratically constrained quadratic programming, Journal of Global Optimization, 43 (2009), 471484. doi: 10.1007/s1089800893720. 
[2] 
A. BenTal and A. Nemirovski, "Lectures on Modern Convex Optimization Analysis, Algorithms and Engineering Applications," SIAM, Philadelphis, 2001. doi: 10.1137/1.9780898718829. 
[3] 
I. Bomze and E. de Klerk, Solving standard quadratic optimization problem via linear, semidefinite and copositive programming, Journal of Global Optimization, 24 (2002), 163185. doi: 10.1023/A:1020209017701. 
[4] 
I. Bomze and G. Eichfelder, Copositivity Detection by differenceofconvex decomposition and $\omega$subdivision,, to appear in Mathematical Programming., (). doi: 10.1007/s101070120543x. 
[5] 
I. Bomze, F. Jarre and F. Rendl, Quadratic factorization heuristics for copositive programming, Mathematical Programming Computation, 3 (2011), 3757. doi: 10.1007/s125320110022z. 
[6] 
M. Brockington and J. Culberson, "Camouflaging Independent Sets in Quasirandom Graphs," Clique Coloring and Satisfiability: Second DIMACS Implementation Challenge, 26, Amer Mathematical Society, 1994. 
[7] 
S. Bundfuss and M. Dür, An adaptive linear approximation algorithm for copositive programs, SIAM Journal on Optimization, 20 (2009), 3053. doi: 10.1137/070711815. 
[8] 
S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs, Mathematical Programming, 120 (2009), 479495. doi: 10.1007/s101070080223z. 
[9] 
S. Burer and K. Anstreicher, Secondorder cone constraints for extended trustregion subproblems, submitted to SIAM Journal on Optimization, (2011). doi: 10.1137/110826862. 
[10] 
Z. Deng, S.C. Fang, Q. Jin and W. Xing, Detecting copositivity of a symmetric matrix by an adaptive ellipsoidbased approximation scheme, accepted by European Journal of Operational Research, (2013). doi: 10.1016/j.ejor.2013.02.031. 
[11] 
, DIMACS Implementation Challenges., , (). 
[12] 
M. Dür, "Copositive Programming: A Survey," Recent Advances in Optimization and Its Application in Engineering, Springer, New York, 2012. 
[13] 
N. Govozdenovic and M. Laurent, The operator $\Psi$ for the chromatic number of a graph, SIAM Journal on Optimization, 19 (2008), 572591. doi: 10.1137/050648237. 
[14] 
M. Grant and S. Boyd, "CVX: matlab Software for Disciplined Programming," version 1.2, 2010. http://cvxr.com/cvx 
[15] 
P. Hansen, B. Jaumard, M. Ruiz and J. Xiong, Global minimization of indefinite quadratic functions subject to box constraints, Naval Research Logistics, 40 (1993), 373392. doi: 10.1002/15206750(199304)40:3<373::AIDNAV3220400307>3.0.CO;2A. 
[16] 
K. Ikramov, Lineartime algorithm for verifying the copositivity of an acyclic matrix, Computational Mathematics and Mathmetical Physics, 42 (2002), 17011703. 
[17] 
E. de Klerk and D. Pasechnik, Approximation of the stability number of a graph via copositive programming, Journal of Global Optimization, 12 (2002), 875892. doi: 10.1137/S1052623401383248. 
[18] 
C. Lu, S.C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems, SIAM Journal on Optimization, 21 (2010), 14751490. doi: 10.1137/100793955. 
[19] 
C. Lu, Q. Jin, S.C. Fang, Z. Wang and W. Xing, An LMI based adaptive approximation scheme to cones of nonnegative quadratic functions, Submitted to Mathematical Programming, (2011). 
[20] 
T. Motzkin and E. Straus, Maxima for graphs and a new proof of a theorem of Turan, Canadian Journal of Mathematics, 17 (1965), 533540. doi: 10.4153/CJM19650536. 
[21] 
K. Murty and S. Kabadi, Some NPcomplete problems in quadratic and nonlinear programming, Mathematical Programming, 39 (1987), 117129. doi: 10.1007/BF02592948. 
[22] 
J. Povh and F. Rendl, Copositive and semidefinite relaxations of the quadratic assignment problem, Discrete Optimization, 6 (2009), 231241. doi: 10.1016/j.disopt.2009.01.002. 
[23] 
J. Preisig, Copositivity and the minimization of quadratic functions with nonnegativity and quadratic equality constraints, SIAM Journal on Control and Optimization, 34 (1996), 11351150. doi: 10.1137/S0363012993251894. 
[24] 
R. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1996. 
[25] 
N. Sahinidis and M. Tawarmalani, "BARON 9.0.4: Global Optimization of MixedInteger Nonlinear Programs,", 2010. , (). 
[26] 
L. Sanchis, Test case construction for the vertex cover problem, in "Computational Support for Discrete Mathematics," DIMACS Series in Discrete Mathematics and Theoretical American Mathematical Society, 15 (1992), Providence, Rhodle Island, (1992). 
[27] 
J. Sturm, SeDuMi 1.02, a matlab tool box for optimization over symmetric cones, Optimization Methods and Software, 11$&$12 (1999), 625653. doi: 10.1080/10556789908805766. 
[28] 
J. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246267. doi: 10.1287/moor.28.2.246.14485. 
[29] 
Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245267. doi: 10.1137/S105262340139001X. 
[30] 
J. Žilinskas, Copositive programming by simplicial partition, Informatica, 22 (2011), 601614. 
[1] 
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear secondorder cone programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 171189. doi: 10.3934/jimo.2013.9.171 
[2] 
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level secondorder cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 11111125. doi: 10.3934/jimo.2015.11.1111 
[3] 
Shiyun Wang, YongJin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965976. doi: 10.3934/jimo.2014.10.965 
[4] 
XiDe Zhu, LiPing Pang, GuiHua Lin. Two approaches for solving mathematical programs with secondorder cone complementarity constraints. Journal of Industrial and Management Optimization, 2015, 11 (3) : 951968. doi: 10.3934/jimo.2015.11.951 
[5] 
Liwei Zhang, Jihong Zhang, Yule Zhang. Secondorder optimality conditions for cone constrained multiobjective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 10411054. doi: 10.3934/jimo.2017089 
[6] 
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with secondorder cone constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 118. doi: 10.3934/naco.2012.2.1 
[7] 
Li Chu, Bo Wang, Jie Zhang, HongWei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with secondorder cone complementarity constraints. Journal of Industrial and Management Optimization, 2021, 17 (4) : 18631886. doi: 10.3934/jimo.2020050 
[8] 
XinHe Miao, Kai Yao, ChingYu Yang, JeinShan Chen. LevenbergMarquardt method for absolute value equation associated with secondorder cone. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 4761. doi: 10.3934/naco.2021050 
[9] 
Lin Zhu, Xinzhen Zhang. Semidefinite relaxation method for polynomial optimization with secondorder cone complementarity constraints. Journal of Industrial and Management Optimization, 2022, 18 (3) : 15051517. doi: 10.3934/jimo.2021030 
[10] 
Narges Torabi Golsefid, Maziar Salahi. Second order cone programming formulation of the fixed cost allocation in DEA based on Nash bargaining game. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021032 
[11] 
Liping Tang, Xinmin Yang, Ying Gao. Higherorder symmetric duality for multiobjective programming with cone constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 18731884. doi: 10.3934/jimo.2019033 
[12] 
Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general secondorder elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821836. doi: 10.3934/era.2020042 
[13] 
Xiaoling Guo, Zhibin Deng, ShuCherng Fang, Wenxun Xing. Quadratic optimization over one firstorder cone. Journal of Industrial and Management Optimization, 2014, 10 (3) : 945963. doi: 10.3934/jimo.2014.10.945 
[14] 
Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial and Management Optimization, 2016, 12 (1) : 269283. doi: 10.3934/jimo.2016.12.269 
[15] 
Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linearquadratic optimal control problem with secondorder linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495512. doi: 10.3934/naco.2020040 
[16] 
Fasma Diele, Angela Martiradonna, Catalin Trenchea. Stability and errors estimates of a secondorder IMSP scheme. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022076 
[17] 
Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 133145. doi: 10.3934/naco.2019010 
[18] 
ZhiBin Deng, Ye Tian, Cheng Lu, WenXun Xing. Globally solving quadratic programs with convex objective and complementarity constraints via completely positive programming. Journal of Industrial and Management Optimization, 2018, 14 (2) : 625636. doi: 10.3934/jimo.2017064 
[19] 
Yongchao Liu, Hailin Sun, Huifu Xu. An approximation scheme for stochastic programs with second order dominance constraints. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 473490. doi: 10.3934/naco.2016021 
[20] 
Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear secondorder conic programming problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 30853098. doi: 10.3934/jimo.2020108 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]