October  2013, 9(4): 723-741. doi: 10.3934/jimo.2013.9.723

Augmented Lagrange primal-dual approach for generalized fractional programming problems

1. 

Department of Applied Mathematics, No.300 Syuefu Rd., Chiayi City 60004, Taiwan

2. 

Department of Mathematics, No.1, University Road, Tainan City 701, Taiwan, Taiwan

Received  August 2011 Revised  March 2013 Published  August 2013

In this paper, we propose a primal-dual approach for solving the generalized fractional programming problem. The outer iteration of the algorithm is a variant of interval-type Dinkelbach algorithm, while the augmented Lagrange method is adopted for solving the inner min-max subproblems. This is indeed a very unique feature of the paper because almost all Dinkelbach-type algorithms in the literature addressed only the outer iteration, while leaving the issue of how to practically solve a sequence of min-max subproblems untouched. The augmented Lagrange method attaches a set of artificial variables as well as their corresponding Lagrange multipliers to the min-max subproblem. As a result, both the primal and the dual information is available for updating the iterate points and the min-max subproblem is then reduced to a sequence of minimization problems. Numerical experiments show that the primal-dual approach can achieve a better precision in fewer iterations.
Citation: Jen-Yen Lin, Hui-Ju Chen, Ruey-Lin Sheu. Augmented Lagrange primal-dual approach for generalized fractional programming problems. Journal of Industrial and Management Optimization, 2013, 9 (4) : 723-741. doi: 10.3934/jimo.2013.9.723
References:
[1]

M. Avriel, E. Diewert, S. Schaible and I. Zang, "Generalized Concavity,'' Society for Industrial and Applied Mathematics, 2010.

[2]

D. P. Bertsekas, "Constrained Optimization and Lagrange Multiplier Methods,'' Computer Science and Applied Mathematics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982.

[3]

D. P. Bertsekas, "Convex Analysis and Optimization,'' With Angelia Nedié and Asuman E. Ozdaglar, Athena Scientific, Belmont, MA, 2003.

[4]

J. C. Bernard and J. A. Ferland, Convergence of interval-type algorithms for generalized fractional programming, Math. Programming, 43 (1989), 349-363. doi: 10.1007/BF01582298.

[5]

A. I. Barros, J. B. G. Frenk, S. Schaible and S. Zhang, A new algorithm for generalized fractional programs, Mathematical Programming, 72 (1996), 147-175. doi: 10.1007/BF02592087.

[6]

I. Barrodale, M. J. D. Powell and F. D. K. Roberts, The differential correction algorithm for rational $l_{\infty}$-approximation, SIAM J. Numer. Anal., 9 (1972), 493-504. doi: 10.1137/0709044.

[7]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186. doi: 10.1002/nav.3800090303.

[8]

J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191-207. doi: 10.1007/BF01582887.

[9]

J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Mathematical Programming, 27 (1983), 342-354. doi: 10.1007/BF02591908.

[10]

J. P. Crouzeix, J. A. Ferland and S. Schaible, An algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 47 (1985), 35-49. doi: 10.1007/BF00941314.

[11]

S.-H. Chu, "Optimal Resources Allocation for a Cognitive Network," Master's thesis, National Cheng Kung University, Taiwan, ROC, 2009. doi: 10.1007/s11277-012-0657-8.

[12]

B. D. Craven, "Fractional Programming,'' Sigma Series in Applied Mathematics, 4, Heldermann Verlag, Berlin, 1988.

[13]

H. J. Chen, S. Schaible and R. L. Sheu, Generic algorithm for generalized fractional programming, J. Optim. Theory Appl., 141 (2009), 93-105. doi: 10.1007/s10957-008-9499-7.

[14]

W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), 492-498. doi: 10.1287/mnsc.13.7.492.

[15]

C. A. Floudas and P. M. Pardalos, eds., "Encyclopedia of Optimization,'' Second edition, Springer, 2009.

[16]

N. Hadjisavvas, S. Komlósi and S. Schaible, eds., "Handbook of generalized convexity and generalized monotonicity,'' Nonconvex Optimization and its Applications, 76, Springer-Verlag, New York, 2005. doi: 10.1007/b101428.

[17]

J. B. Hiriart-Urruty and C. Lemarechal, "Convex Analysis and Minimization Algorithm,'' Springer-Verlag, Berlin, 1994.

[18]

R. Jagannathan, On projective representations of finite abelian groups, in "Number Theory" (Ootacamund, 1984), Lecture Notes in Math., 1122, Springer, Berlin, (1985), 130-139. doi: 10.1007/BFb0075756.

[19]

J. von Neumann, A model of general economic equilibrium, The Review of Economic Studies, 13 (1945), 1-9. doi: 10.2307/2296111.

[20]

E. Polak, J. E. Higgins and D. Q. Mayne, A barrier function method for minimax problems, Math. Program., 54 (1992), 155-176. doi: 10.1007/BF01586049.

[21]

R. T. Rockafellar, "Convex Analysis,'' Reprint of the 1970 original, Princeton Landmarks in Mathematics, Princeton Paperbacks, Princeton University Press, Princeton, NJ, 1997.

[22]

S. Schaible, Fractional programming. I. Duality, Management Science, 22 (1976), 858-867.

[23]

S. Schaible, Multi-ratio fractional programming-a survey, in "Optimization, Parallel Processing and Applications'' (Oberwolfach, 1987 and Karlsruhe, 1987), Lecture Notes in Econom. and Math. Systems, 304, Springer, Berlin, (1988), 57-66. doi: 10.1007/978-3-642-46631-1_7.

[24]

S. Schaible and J. Shi, Recent developments in fractional programming: Single-ratio and max-min case, in "Nonlinear Analysis and Convex Analysis," Yokohama Publ., Yokohama, (2004), 493-506.

[25]

R.-L. Sheu and J.-Y. Lin, Solving continuous min-max problems by an iterative entropic regularization method, J. Optim. Theory Appl., 121 (2004), 597-612. doi: 10.1023/B:JOTA.0000037605.19435.63.

[26]

M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176. doi: 10.2140/pjm.1958.8.171.

[27]

I. M. Stancu-Minasian, Bibliography of fractional programming, 1960-1976, Pure Appl. Math. Sci., 13 (1981), 35-69.

[28]

I. M. Stancu-Minasian, A second bibliography of fractional programming: 1977-1981, Pure Appl. Math. Sci., 17 (1983), 87-102.

[29]

I. M. Stancu-Minasian, A third bibliography of fractional programming, Pure Appl. Math. Sci., 22 (1985), 109-122.

[30]

I. M. Stancu-Minasian, A fourth bibliography of fractional programming, Optimization, 23 (1992), 53-71. doi: 10.1080/02331939208843744.

[31]

I. M. Stancu-Minasian, A fifth bibliography of fractional programming, Dedicated to the memory of Professor Karl-Heinz Elster, Optimization, 45 (1999), 343-367. doi: 10.1080/02331939908844438.

[32]

I. M. Stancu-Minasian, A sixth bibliography of fractional programming, Optimization, 55 (2006), 405-428. doi: 10.1080/02331930600819613.

show all references

References:
[1]

M. Avriel, E. Diewert, S. Schaible and I. Zang, "Generalized Concavity,'' Society for Industrial and Applied Mathematics, 2010.

[2]

D. P. Bertsekas, "Constrained Optimization and Lagrange Multiplier Methods,'' Computer Science and Applied Mathematics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982.

[3]

D. P. Bertsekas, "Convex Analysis and Optimization,'' With Angelia Nedié and Asuman E. Ozdaglar, Athena Scientific, Belmont, MA, 2003.

[4]

J. C. Bernard and J. A. Ferland, Convergence of interval-type algorithms for generalized fractional programming, Math. Programming, 43 (1989), 349-363. doi: 10.1007/BF01582298.

[5]

A. I. Barros, J. B. G. Frenk, S. Schaible and S. Zhang, A new algorithm for generalized fractional programs, Mathematical Programming, 72 (1996), 147-175. doi: 10.1007/BF02592087.

[6]

I. Barrodale, M. J. D. Powell and F. D. K. Roberts, The differential correction algorithm for rational $l_{\infty}$-approximation, SIAM J. Numer. Anal., 9 (1972), 493-504. doi: 10.1137/0709044.

[7]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186. doi: 10.1002/nav.3800090303.

[8]

J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191-207. doi: 10.1007/BF01582887.

[9]

J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Mathematical Programming, 27 (1983), 342-354. doi: 10.1007/BF02591908.

[10]

J. P. Crouzeix, J. A. Ferland and S. Schaible, An algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 47 (1985), 35-49. doi: 10.1007/BF00941314.

[11]

S.-H. Chu, "Optimal Resources Allocation for a Cognitive Network," Master's thesis, National Cheng Kung University, Taiwan, ROC, 2009. doi: 10.1007/s11277-012-0657-8.

[12]

B. D. Craven, "Fractional Programming,'' Sigma Series in Applied Mathematics, 4, Heldermann Verlag, Berlin, 1988.

[13]

H. J. Chen, S. Schaible and R. L. Sheu, Generic algorithm for generalized fractional programming, J. Optim. Theory Appl., 141 (2009), 93-105. doi: 10.1007/s10957-008-9499-7.

[14]

W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), 492-498. doi: 10.1287/mnsc.13.7.492.

[15]

C. A. Floudas and P. M. Pardalos, eds., "Encyclopedia of Optimization,'' Second edition, Springer, 2009.

[16]

N. Hadjisavvas, S. Komlósi and S. Schaible, eds., "Handbook of generalized convexity and generalized monotonicity,'' Nonconvex Optimization and its Applications, 76, Springer-Verlag, New York, 2005. doi: 10.1007/b101428.

[17]

J. B. Hiriart-Urruty and C. Lemarechal, "Convex Analysis and Minimization Algorithm,'' Springer-Verlag, Berlin, 1994.

[18]

R. Jagannathan, On projective representations of finite abelian groups, in "Number Theory" (Ootacamund, 1984), Lecture Notes in Math., 1122, Springer, Berlin, (1985), 130-139. doi: 10.1007/BFb0075756.

[19]

J. von Neumann, A model of general economic equilibrium, The Review of Economic Studies, 13 (1945), 1-9. doi: 10.2307/2296111.

[20]

E. Polak, J. E. Higgins and D. Q. Mayne, A barrier function method for minimax problems, Math. Program., 54 (1992), 155-176. doi: 10.1007/BF01586049.

[21]

R. T. Rockafellar, "Convex Analysis,'' Reprint of the 1970 original, Princeton Landmarks in Mathematics, Princeton Paperbacks, Princeton University Press, Princeton, NJ, 1997.

[22]

S. Schaible, Fractional programming. I. Duality, Management Science, 22 (1976), 858-867.

[23]

S. Schaible, Multi-ratio fractional programming-a survey, in "Optimization, Parallel Processing and Applications'' (Oberwolfach, 1987 and Karlsruhe, 1987), Lecture Notes in Econom. and Math. Systems, 304, Springer, Berlin, (1988), 57-66. doi: 10.1007/978-3-642-46631-1_7.

[24]

S. Schaible and J. Shi, Recent developments in fractional programming: Single-ratio and max-min case, in "Nonlinear Analysis and Convex Analysis," Yokohama Publ., Yokohama, (2004), 493-506.

[25]

R.-L. Sheu and J.-Y. Lin, Solving continuous min-max problems by an iterative entropic regularization method, J. Optim. Theory Appl., 121 (2004), 597-612. doi: 10.1023/B:JOTA.0000037605.19435.63.

[26]

M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176. doi: 10.2140/pjm.1958.8.171.

[27]

I. M. Stancu-Minasian, Bibliography of fractional programming, 1960-1976, Pure Appl. Math. Sci., 13 (1981), 35-69.

[28]

I. M. Stancu-Minasian, A second bibliography of fractional programming: 1977-1981, Pure Appl. Math. Sci., 17 (1983), 87-102.

[29]

I. M. Stancu-Minasian, A third bibliography of fractional programming, Pure Appl. Math. Sci., 22 (1985), 109-122.

[30]

I. M. Stancu-Minasian, A fourth bibliography of fractional programming, Optimization, 23 (1992), 53-71. doi: 10.1080/02331939208843744.

[31]

I. M. Stancu-Minasian, A fifth bibliography of fractional programming, Dedicated to the memory of Professor Karl-Heinz Elster, Optimization, 45 (1999), 343-367. doi: 10.1080/02331939908844438.

[32]

I. M. Stancu-Minasian, A sixth bibliography of fractional programming, Optimization, 55 (2006), 405-428. doi: 10.1080/02331930600819613.

[1]

Fang Chen, Ning Gao, Yao- Lin Jiang. On product-type generalized block AOR method for augmented linear systems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 797-809. doi: 10.3934/naco.2012.2.797

[2]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[3]

Jie Zhang, Shuang Lin, Li-Wei Zhang. A log-exponential regularization method for a mathematical program with general vertical complementarity constraints. Journal of Industrial and Management Optimization, 2013, 9 (3) : 561-577. doi: 10.3934/jimo.2013.9.561

[4]

Xiantao Xiao, Jian Gu, Liwei Zhang, Shaowu Zhang. A sequential convex program method to DC program with joint chance constraints. Journal of Industrial and Management Optimization, 2012, 8 (3) : 733-747. doi: 10.3934/jimo.2012.8.733

[5]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[6]

S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463-475. doi: 10.3934/proc.2005.2005.463

[7]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[8]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[9]

Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial and Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381

[10]

Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial and Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391

[11]

Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2267-2281. doi: 10.3934/jimo.2019053

[12]

Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 1-9. doi: 10.3934/jimo.2018136

[13]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems and Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[14]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[15]

Fatemeh Bazikar, Saeed Ketabchi, Hossein Moosaei. Smooth augmented Lagrangian method for twin bounded support vector machine. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021027

[16]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[17]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[18]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial and Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[19]

Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial and Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241

[20]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (138)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]