-
Previous Article
Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand
- JIMO Home
- This Issue
-
Next Article
Augmented Lagrange primal-dual approach for generalized fractional programming problems
Optimal investment-consumption problem with constraint
1. | School of Insurance, Central University Of Finance and Economics, Beijing 100081 |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
3. | Department of Mathematics and Statistics, Curtin University, Perth, W.A. 6845 |
References:
[1] |
D. Applebeaum, "Levy Processes and Stochastic Calculus,", $2^{nd}$ edition, (2009).
doi: 10.1017/CBO9780511809781. |
[2] |
J. M. Bismut, Conjugate convex functions in optimal stochastic control,, Math. Anal. Appl., 44 (1974), 384.
doi: 10.1016/0022-247X(73)90066-8. |
[3] |
S. M. Chen, Z. F. Li and K. M. Li, Optimal investment-einsurance policy for an insurance company with VaR constraint,, Insurance: Mathematics and Economics, 47 (2010), 144.
doi: 10.1016/j.insmatheco.2010.06.002. |
[4] |
J. C. Cox and C. F. Huang, Optimal consumption and portfolio policies when asset prices follow a diffusion process,, J. Econom. Theory., 49 (1989), 33.
doi: 10.1016/0022-0531(89)90067-7. |
[5] |
J. C. Cox and C. F. Huang, A variational problem arising in financial economics,, J. Math. Econom., 20 (1991), 465.
doi: 10.1016/0304-4068(91)90004-D. |
[6] |
D. Cuoco, Optimal consumption and equilibrium prices with portfolio constraints and stochastic income,, J. Econom. Theory., 72 (1997), 33.
doi: 10.1006/jeth.1996.2207. |
[7] |
J. Cvitanic and I. Karatzas, Convex duality in constrained portfolio optimization,, Ann. Appl. Probab., 2 (1992), 767.
doi: 10.1214/aoap/1177005576. |
[8] |
J. M. Harrison and D. Kreps, Martingales and arbitrage in multiperiod security markets,, J. Econom. Theory., 20 (1979), 381.
doi: 10.1016/0022-0531(79)90043-7. |
[9] |
J. M. Harrison and S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading,, Stochastic Process. Appl., 11 (1981), 215.
doi: 10.1016/0304-4149(81)90026-0. |
[10] |
H. He and N. D. Pearson, Consumption and portfolio policies with incomplete markets and short-sale constraints: The finite-dimensional case,, Mathematical Finance, 1 (1991), 1.
doi: 10.1016/0022-0531(91)90123-L. |
[11] |
H. He and N. D. Pearson, Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite-dimensional case,, J. Econom. Theory., 54 (1991), 259.
doi: 10.1016/0022-0531(91)90123-L. |
[12] |
I. Karatzas, J. P. Lehoczky and S. E. Shreve, Optimal portfolio and consumption decisions for a small investor on a finite horizon,, SIAM J. Control Optim., 25 (1987), 1557.
doi: 10.1137/0325086. |
[13] |
I. Karatzas, J. P. Lehoczky, S. E. Shreve and G. L. Xu, Martingale and duality methods for utility maximization in incomplete markets,, Mathematical Finance, 15 (1991), 203.
doi: 10.1137/0329039. |
[14] |
D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets,, Ann. Appl. Probab., 9 (1999), 904.
doi: 10.1214/aoap/1029962818. |
[15] |
V. L. Levin, Extreme problems with convex functionals that are lower-semicontinuous with respect to convergence in measure,, Soviet math. Dokl., 16 (1976), 1384.
|
[16] |
J. Z. Liu, K. F. C. Yiu and K. L. Teo, Optimal portfolios with stress analysis and the effect of a CVaR constraint,, Pac. J. Optim., 7 (2011), 83.
|
[17] |
J. Z. Liu, L. H. Bai and K. F. C. Yiu, Optimal investment with a value-at-risk constraint,, Journal of Industrial and Management Optimization, 8 (2012), 531.
doi: 10.3934/jimo.2012.8.531. |
[18] |
R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, The Review of Economics and Statistics, 51 (1969), 247.
doi: 10.2307/1926560. |
[19] |
R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model,, J. Econom. Theory., 3 (1971), 373.
doi: 10.1016/0022-0531(71)90038-X. |
[20] |
T. A. Pirvu, Portfolio optimization under the Value-at-Risk constraint,, Quantitative Finance, 7 (2007), 125.
doi: 10.1080/14697680701213868. |
[21] |
S. R. Pliska, A stochastic calculus model of continuous trading: Optimal portfolio,, Math. Oper. Res., 11 (1986), 371.
doi: 10.1287/moor.11.2.371. |
[22] |
S. A. Ross, The arbitrage theory of capital asset pricing,, J. Econom. Theory., 13 (1976), 341.
doi: 10.1016/0022-0531(76)90046-6. |
[23] |
K. F. C. Yiu, Optimal portfolio under a value-at-risk constraint,, Journal of Economic Dynamics and Control, 28 (2004), 1317.
doi: 10.1016/S0165-1889(03)00116-7. |
[24] |
K. F. C. Yiu, J. Z. Liu, T. K. Siu and W. C. Ching, Optimal portfolios with regime-switching and value-at-risk constraint,, Automatica, 46 (2010), 1979.
doi: 10.1016/j.automatica.2010.02.027. |
show all references
References:
[1] |
D. Applebeaum, "Levy Processes and Stochastic Calculus,", $2^{nd}$ edition, (2009).
doi: 10.1017/CBO9780511809781. |
[2] |
J. M. Bismut, Conjugate convex functions in optimal stochastic control,, Math. Anal. Appl., 44 (1974), 384.
doi: 10.1016/0022-247X(73)90066-8. |
[3] |
S. M. Chen, Z. F. Li and K. M. Li, Optimal investment-einsurance policy for an insurance company with VaR constraint,, Insurance: Mathematics and Economics, 47 (2010), 144.
doi: 10.1016/j.insmatheco.2010.06.002. |
[4] |
J. C. Cox and C. F. Huang, Optimal consumption and portfolio policies when asset prices follow a diffusion process,, J. Econom. Theory., 49 (1989), 33.
doi: 10.1016/0022-0531(89)90067-7. |
[5] |
J. C. Cox and C. F. Huang, A variational problem arising in financial economics,, J. Math. Econom., 20 (1991), 465.
doi: 10.1016/0304-4068(91)90004-D. |
[6] |
D. Cuoco, Optimal consumption and equilibrium prices with portfolio constraints and stochastic income,, J. Econom. Theory., 72 (1997), 33.
doi: 10.1006/jeth.1996.2207. |
[7] |
J. Cvitanic and I. Karatzas, Convex duality in constrained portfolio optimization,, Ann. Appl. Probab., 2 (1992), 767.
doi: 10.1214/aoap/1177005576. |
[8] |
J. M. Harrison and D. Kreps, Martingales and arbitrage in multiperiod security markets,, J. Econom. Theory., 20 (1979), 381.
doi: 10.1016/0022-0531(79)90043-7. |
[9] |
J. M. Harrison and S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading,, Stochastic Process. Appl., 11 (1981), 215.
doi: 10.1016/0304-4149(81)90026-0. |
[10] |
H. He and N. D. Pearson, Consumption and portfolio policies with incomplete markets and short-sale constraints: The finite-dimensional case,, Mathematical Finance, 1 (1991), 1.
doi: 10.1016/0022-0531(91)90123-L. |
[11] |
H. He and N. D. Pearson, Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite-dimensional case,, J. Econom. Theory., 54 (1991), 259.
doi: 10.1016/0022-0531(91)90123-L. |
[12] |
I. Karatzas, J. P. Lehoczky and S. E. Shreve, Optimal portfolio and consumption decisions for a small investor on a finite horizon,, SIAM J. Control Optim., 25 (1987), 1557.
doi: 10.1137/0325086. |
[13] |
I. Karatzas, J. P. Lehoczky, S. E. Shreve and G. L. Xu, Martingale and duality methods for utility maximization in incomplete markets,, Mathematical Finance, 15 (1991), 203.
doi: 10.1137/0329039. |
[14] |
D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets,, Ann. Appl. Probab., 9 (1999), 904.
doi: 10.1214/aoap/1029962818. |
[15] |
V. L. Levin, Extreme problems with convex functionals that are lower-semicontinuous with respect to convergence in measure,, Soviet math. Dokl., 16 (1976), 1384.
|
[16] |
J. Z. Liu, K. F. C. Yiu and K. L. Teo, Optimal portfolios with stress analysis and the effect of a CVaR constraint,, Pac. J. Optim., 7 (2011), 83.
|
[17] |
J. Z. Liu, L. H. Bai and K. F. C. Yiu, Optimal investment with a value-at-risk constraint,, Journal of Industrial and Management Optimization, 8 (2012), 531.
doi: 10.3934/jimo.2012.8.531. |
[18] |
R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, The Review of Economics and Statistics, 51 (1969), 247.
doi: 10.2307/1926560. |
[19] |
R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model,, J. Econom. Theory., 3 (1971), 373.
doi: 10.1016/0022-0531(71)90038-X. |
[20] |
T. A. Pirvu, Portfolio optimization under the Value-at-Risk constraint,, Quantitative Finance, 7 (2007), 125.
doi: 10.1080/14697680701213868. |
[21] |
S. R. Pliska, A stochastic calculus model of continuous trading: Optimal portfolio,, Math. Oper. Res., 11 (1986), 371.
doi: 10.1287/moor.11.2.371. |
[22] |
S. A. Ross, The arbitrage theory of capital asset pricing,, J. Econom. Theory., 13 (1976), 341.
doi: 10.1016/0022-0531(76)90046-6. |
[23] |
K. F. C. Yiu, Optimal portfolio under a value-at-risk constraint,, Journal of Economic Dynamics and Control, 28 (2004), 1317.
doi: 10.1016/S0165-1889(03)00116-7. |
[24] |
K. F. C. Yiu, J. Z. Liu, T. K. Siu and W. C. Ching, Optimal portfolios with regime-switching and value-at-risk constraint,, Automatica, 46 (2010), 1979.
doi: 10.1016/j.automatica.2010.02.027. |
[1] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[2] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[3] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[4] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[5] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 |
[6] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[7] |
Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114 |
[8] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[9] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[10] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[11] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[12] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[13] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[14] |
Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021003 |
[15] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[16] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[17] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[18] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[19] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[20] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]