October  2013, 9(4): 769-787. doi: 10.3934/jimo.2013.9.769

Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand

1. 

Marketing and Logistics Management Department, St. John’s University, Tamsui, Taipei 25135, Taiwan

2. 

Industrial and Systems Engineering Department, Chung Yuan Christian University, Chungli, 32023, Taiwan

3. 

Information Management Department, St. John’s University, Tamsui, Taipei 25135, Taiwan

4. 

Industrial Engineering and Management Department, St. John’s University, Tamsui, Taipei 25135, Taiwan

Received  August 2011 Revised  March 2013 Published  August 2013

Due to globalization and technological advances, increasing competition and falling prices have forced enterprises to reduce cost; this poses new challenges in pricing and replenishment strategy. The study develops a piecewise production-inventory model for a multi-market deteriorating product with time-varying and price-sensitive demand. Optimal product pricing and material replenishment strategy is derived to optimize the manufacturer's total profit. Sensitivity analyses of how the major parameters affect the decision variables were carried out. Finally, the single production cycle is extended to multiple production cycles. We find that the total profit for multiple production cycle increases 5.77/100 when compared with the single production cycle.
Citation: Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769
References:
[1]

Z. T. Balkhi and L. Benkherouf, A production lot size inventory model for deteriorating items and arbitrary production and demand rates,, European Journal of Operational Research, 92 (1996), 302. doi: 10.1016/0377-2217(95)00148-4. Google Scholar

[2]

H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot sizing policies for deteriorating items with partial backlogging,, European Journal of Operational Research, 168 (2006), 51. doi: 10.1016/j.ejor.2004.05.003. Google Scholar

[3]

P. M. Ghare and S. F. Schrader, A model for exponentially decaying inventory,, Journal of Industrial Engineering, 14 (1963), 238. Google Scholar

[4]

Y. He, S. Y. Wang and K. K. Lai, An optimal production-inventory model for deteriorating items with multiple-market demand,, European Journal of Operational Research, 203 (2010), 593. doi: 10.1016/j.ejor.2009.09.003. Google Scholar

[5]

S. Kang and I. Kim, A study on the price and production level of the deteriorating inventory system,, International Journal of Production Research, 21 (1983), 449. doi: 10.1080/00207548308942422. Google Scholar

[6]

M. Khouja, The effect of large order quantities on expected profit in the single-period model,, International Journal of Production Economics, 72 (2001), 227. doi: 10.1016/S0925-5273(00)00150-X. Google Scholar

[7]

P. Kouvelis and G. J. Gutierrez, The newsvendor problem in a global market: Optimal centralized and decentralized control policies for a two-market stochastic inventory system,, Management Science, 43 (1997), 571. doi: 10.1287/mnsc.43.5.571. Google Scholar

[8]

S. X. Li, Z. Hung and A. Ashley, Inventory channel coordination and bargaining in a manufacturer-retailer system,, Annals of Operations Research, 68 (1996), 47. doi: 10.1007/BF02205448. Google Scholar

[9]

W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs,, Journal of Industrial and Management Optimization, 8 (2012), 271. doi: 10.3934/jimo.2012.8.271. Google Scholar

[10]

K. L. Mak, A production lot size inventory model for deteriorating items,, Computers & Industrial Engineering, 6 (1982), 309. doi: 10.1016/0360-8352(82)90009-2. Google Scholar

[11]

S. K. Manna and K. S. Chaudhuri, An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages,, European Journal of Operational Research, 171 (2006), 557. doi: 10.1016/j.ejor.2004.08.041. Google Scholar

[12]

S. Papachristos and K. Skouri, An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential,, Operations Research Letters, 27 (2000), 175. doi: 10.1016/S0167-6377(00)00044-4. Google Scholar

[13]

F. Raafat, P. M. Wolfe and H. K. Eldin, An inventory model for deteriorating items,, Computers & Industrial Engineering, 20 (1991), 89. doi: 10.1016/0360-8352(91)90043-6. Google Scholar

[14]

H. M. Wee, Economic production lot size model for deteriorating items with partial back-ordering,, Computers & Industrial Engineering, 24 (1993), 449. doi: 10.1016/0360-8352(93)90040-5. Google Scholar

[15]

H. M. Wee, Joint pricing and replenishment policy for deteriorating inventory with declining market,, International Journal of Production Economics, 40 (1995), 163. doi: 10.1016/0925-5273(95)00053-3. Google Scholar

[16]

H. M. Wee and J. F. Jong, An integrated multi-lot-size production inventory model for deteriorated items,, Management & System, 5 (1998), 97. doi: 10.1016/j.cor.2005.01.006. Google Scholar

[17]

Z. K. Weng, Modeling quantity discount under general price-sensitive demand functions: Optimal policies and relations,, European Journal of Operational Research, 86 (1995), 300. Google Scholar

[18]

Z. K. Weng and R. T. Wong, General models for the supplier's all-unit quantity discount policy,, Navel Research Logistics, 40 (1993), 971. doi: 10.1002/1520-6750(199312)40:7<971::AID-NAV3220400708>3.0.CO;2-T. Google Scholar

[19]

K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging,, International Journal of Production Economics, 101 (2006), 369. doi: 10.1016/j.ijpe.2005.01.010. Google Scholar

[20]

P. C. Yang and H. M. Wee, An integrated multi-lot size inventory model for deteriorating items,, Computers & Operations Research, 30 (2003), 671. doi: 10.1016/S0305-0548(02)00032-1. Google Scholar

[21]

P. C. Yang and H. M. Wee, A win-win strategy for an integrated vendor-buyer deteriorating inventory system,, Mathematical Modelling and Analysis, 11 (2006), 105. Google Scholar

[22]

P. C. Yang, H. M. Wee, S. L. Chung and P. C. Ho, Sequential and global optimization for a closed-loop deteriorating inventory supply chain,, Mathematical and Computer Modelling, 52 (2010), 161. doi: 10.1016/j.mcm.2010.02.005. Google Scholar

[23]

P. C. Yang, H. M. Wee, B. S. Liu and O. K. Fong, Mitigating hi-tech products risks due to rapid technological innovation,, Omega, 39 (2011), 456. doi: 10.1016/j.omega.2010.09.007. Google Scholar

[24]

J. C. P. Yu, H. M. Wee and K. J. Wang, Supply chain partnership for three-echelon deteriorating inventory model,, Journal of Industrial and Management Optimization, 5 (2008), 827. doi: 10.3934/jimo.2008.4.827. Google Scholar

show all references

References:
[1]

Z. T. Balkhi and L. Benkherouf, A production lot size inventory model for deteriorating items and arbitrary production and demand rates,, European Journal of Operational Research, 92 (1996), 302. doi: 10.1016/0377-2217(95)00148-4. Google Scholar

[2]

H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot sizing policies for deteriorating items with partial backlogging,, European Journal of Operational Research, 168 (2006), 51. doi: 10.1016/j.ejor.2004.05.003. Google Scholar

[3]

P. M. Ghare and S. F. Schrader, A model for exponentially decaying inventory,, Journal of Industrial Engineering, 14 (1963), 238. Google Scholar

[4]

Y. He, S. Y. Wang and K. K. Lai, An optimal production-inventory model for deteriorating items with multiple-market demand,, European Journal of Operational Research, 203 (2010), 593. doi: 10.1016/j.ejor.2009.09.003. Google Scholar

[5]

S. Kang and I. Kim, A study on the price and production level of the deteriorating inventory system,, International Journal of Production Research, 21 (1983), 449. doi: 10.1080/00207548308942422. Google Scholar

[6]

M. Khouja, The effect of large order quantities on expected profit in the single-period model,, International Journal of Production Economics, 72 (2001), 227. doi: 10.1016/S0925-5273(00)00150-X. Google Scholar

[7]

P. Kouvelis and G. J. Gutierrez, The newsvendor problem in a global market: Optimal centralized and decentralized control policies for a two-market stochastic inventory system,, Management Science, 43 (1997), 571. doi: 10.1287/mnsc.43.5.571. Google Scholar

[8]

S. X. Li, Z. Hung and A. Ashley, Inventory channel coordination and bargaining in a manufacturer-retailer system,, Annals of Operations Research, 68 (1996), 47. doi: 10.1007/BF02205448. Google Scholar

[9]

W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs,, Journal of Industrial and Management Optimization, 8 (2012), 271. doi: 10.3934/jimo.2012.8.271. Google Scholar

[10]

K. L. Mak, A production lot size inventory model for deteriorating items,, Computers & Industrial Engineering, 6 (1982), 309. doi: 10.1016/0360-8352(82)90009-2. Google Scholar

[11]

S. K. Manna and K. S. Chaudhuri, An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages,, European Journal of Operational Research, 171 (2006), 557. doi: 10.1016/j.ejor.2004.08.041. Google Scholar

[12]

S. Papachristos and K. Skouri, An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential,, Operations Research Letters, 27 (2000), 175. doi: 10.1016/S0167-6377(00)00044-4. Google Scholar

[13]

F. Raafat, P. M. Wolfe and H. K. Eldin, An inventory model for deteriorating items,, Computers & Industrial Engineering, 20 (1991), 89. doi: 10.1016/0360-8352(91)90043-6. Google Scholar

[14]

H. M. Wee, Economic production lot size model for deteriorating items with partial back-ordering,, Computers & Industrial Engineering, 24 (1993), 449. doi: 10.1016/0360-8352(93)90040-5. Google Scholar

[15]

H. M. Wee, Joint pricing and replenishment policy for deteriorating inventory with declining market,, International Journal of Production Economics, 40 (1995), 163. doi: 10.1016/0925-5273(95)00053-3. Google Scholar

[16]

H. M. Wee and J. F. Jong, An integrated multi-lot-size production inventory model for deteriorated items,, Management & System, 5 (1998), 97. doi: 10.1016/j.cor.2005.01.006. Google Scholar

[17]

Z. K. Weng, Modeling quantity discount under general price-sensitive demand functions: Optimal policies and relations,, European Journal of Operational Research, 86 (1995), 300. Google Scholar

[18]

Z. K. Weng and R. T. Wong, General models for the supplier's all-unit quantity discount policy,, Navel Research Logistics, 40 (1993), 971. doi: 10.1002/1520-6750(199312)40:7<971::AID-NAV3220400708>3.0.CO;2-T. Google Scholar

[19]

K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging,, International Journal of Production Economics, 101 (2006), 369. doi: 10.1016/j.ijpe.2005.01.010. Google Scholar

[20]

P. C. Yang and H. M. Wee, An integrated multi-lot size inventory model for deteriorating items,, Computers & Operations Research, 30 (2003), 671. doi: 10.1016/S0305-0548(02)00032-1. Google Scholar

[21]

P. C. Yang and H. M. Wee, A win-win strategy for an integrated vendor-buyer deteriorating inventory system,, Mathematical Modelling and Analysis, 11 (2006), 105. Google Scholar

[22]

P. C. Yang, H. M. Wee, S. L. Chung and P. C. Ho, Sequential and global optimization for a closed-loop deteriorating inventory supply chain,, Mathematical and Computer Modelling, 52 (2010), 161. doi: 10.1016/j.mcm.2010.02.005. Google Scholar

[23]

P. C. Yang, H. M. Wee, B. S. Liu and O. K. Fong, Mitigating hi-tech products risks due to rapid technological innovation,, Omega, 39 (2011), 456. doi: 10.1016/j.omega.2010.09.007. Google Scholar

[24]

J. C. P. Yu, H. M. Wee and K. J. Wang, Supply chain partnership for three-echelon deteriorating inventory model,, Journal of Industrial and Management Optimization, 5 (2008), 827. doi: 10.3934/jimo.2008.4.827. Google Scholar

[1]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[2]

Lizhao Yan, Fei Xu, Yongzeng Lai, Mingyong Lai. Stability strategies of manufacturing-inventory systems with unknown time-varying demand. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2033-2047. doi: 10.3934/jimo.2017030

[3]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[4]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Deteriorating inventory with preservation technology under price- and stock-sensitive demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-28. doi: 10.3934/jimo.2019019

[5]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1345-1373. doi: 10.3934/jimo.2018098

[6]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[7]

Jia Shu, Zhengyi Li, Weijun Zhong. A market selection and inventory ordering problem under demand uncertainty. Journal of Industrial & Management Optimization, 2011, 7 (2) : 425-434. doi: 10.3934/jimo.2011.7.425

[8]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019095

[9]

Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1

[10]

Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial & Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299

[11]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[12]

Marcelo J. Villena, Mauricio Contreras. Global and local advertising strategies: A dynamic multi-market optimal control model. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1017-1048. doi: 10.3934/jimo.2018084

[13]

Bing-Bing Cao, Zhi-Ping Fan, Tian-Hui You. The optimal pricing and ordering policy for temperature sensitive products considering the effects of temperature on demand. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1153-1184. doi: 10.3934/jimo.2018090

[14]

Kar Hung Wong, Yu Chung Eugene Lee, Heung Wing Joseph Lee, Chi Kin Chan. Optimal production schedule in a single-supplier multi-manufacturer supply chain involving time delays in both levels. Journal of Industrial & Management Optimization, 2018, 14 (3) : 877-894. doi: 10.3934/jimo.2017080

[15]

M. M. Ali, L. Masinga. A nonlinear optimization model for optimal order quantities with stochastic demand rate and price change. Journal of Industrial & Management Optimization, 2007, 3 (1) : 139-154. doi: 10.3934/jimo.2007.3.139

[16]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[17]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[18]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[19]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[20]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (7)

[Back to Top]