October  2013, 9(4): 885-892. doi: 10.3934/jimo.2013.9.885

Reduction and dynamic approach for the multi-choice Shapley value

1. 

Department of Applied Mathematics, National Dong Hwa University, Hualien 974, Taiwan

2. 

Department of Applied Mathematics, National Pingtung University of Education, Pingtung 900, Taiwan

Received  March 2012 Revised  February 2013 Published  August 2013

In the framework of multi-choice games, we propose a specific reduction to construct a dynamic process for the multi-choice Shapley value introduced by Nouweland et al. [8].
Citation: Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885
References:
[1]

R. J. Aumann and L. S. Shapley, "Values of Non-Atomic Games,", Princeton University Press, (1974).   Google Scholar

[2]

E. Calvo and J. C. Santos, A value for multichoice games,, Mathematical Social Sciences, 40 (2000), 341.  doi: 10.1016/S0165-4896(99)00054-2.  Google Scholar

[3]

S. Hart and A. Mas-Colell, Potential, value and consistency,, Econometrica, 57 (1989), 589.  doi: 10.2307/1911054.  Google Scholar

[4]

Y. A. Hwang and Y. H. Liao, Potentializability and consistency for multi-choice solutions,, Spanish Economic Review, 10 (2008), 289.   Google Scholar

[5]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games,, International Journal of Game Theory, 18 (1989), 389.  doi: 10.1007/BF01358800.  Google Scholar

[6]

H. Moulin, On additive methods to share joint costs,, The Japanese Economic Review, 46 (1995), 303.   Google Scholar

[7]

R. Myerson, Conference structures and fair allocation rules,, International Journal of Game Theory, 9 (1980), 169.  doi: 10.1007/BF01781371.  Google Scholar

[8]

A. van den Nouweland, J. Potters, S. Tijs and J. M. Zarzuelo, Core and related solution concepts for multi-choice games,, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289.  doi: 10.1007/BF01432361.  Google Scholar

[9]

L. S. Shapley, A value for $n$-person game,, in, 28 (1953), 307.   Google Scholar

show all references

References:
[1]

R. J. Aumann and L. S. Shapley, "Values of Non-Atomic Games,", Princeton University Press, (1974).   Google Scholar

[2]

E. Calvo and J. C. Santos, A value for multichoice games,, Mathematical Social Sciences, 40 (2000), 341.  doi: 10.1016/S0165-4896(99)00054-2.  Google Scholar

[3]

S. Hart and A. Mas-Colell, Potential, value and consistency,, Econometrica, 57 (1989), 589.  doi: 10.2307/1911054.  Google Scholar

[4]

Y. A. Hwang and Y. H. Liao, Potentializability and consistency for multi-choice solutions,, Spanish Economic Review, 10 (2008), 289.   Google Scholar

[5]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games,, International Journal of Game Theory, 18 (1989), 389.  doi: 10.1007/BF01358800.  Google Scholar

[6]

H. Moulin, On additive methods to share joint costs,, The Japanese Economic Review, 46 (1995), 303.   Google Scholar

[7]

R. Myerson, Conference structures and fair allocation rules,, International Journal of Game Theory, 9 (1980), 169.  doi: 10.1007/BF01781371.  Google Scholar

[8]

A. van den Nouweland, J. Potters, S. Tijs and J. M. Zarzuelo, Core and related solution concepts for multi-choice games,, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289.  doi: 10.1007/BF01432361.  Google Scholar

[9]

L. S. Shapley, A value for $n$-person game,, in, 28 (1953), 307.   Google Scholar

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[7]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[8]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[9]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[10]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[11]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]