October  2013, 9(4): 885-892. doi: 10.3934/jimo.2013.9.885

Reduction and dynamic approach for the multi-choice Shapley value

1. 

Department of Applied Mathematics, National Dong Hwa University, Hualien 974, Taiwan

2. 

Department of Applied Mathematics, National Pingtung University of Education, Pingtung 900, Taiwan

Received  March 2012 Revised  February 2013 Published  August 2013

In the framework of multi-choice games, we propose a specific reduction to construct a dynamic process for the multi-choice Shapley value introduced by Nouweland et al. [8].
Citation: Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885
References:
[1]

R. J. Aumann and L. S. Shapley, "Values of Non-Atomic Games,", Princeton University Press, (1974). Google Scholar

[2]

E. Calvo and J. C. Santos, A value for multichoice games,, Mathematical Social Sciences, 40 (2000), 341. doi: 10.1016/S0165-4896(99)00054-2. Google Scholar

[3]

S. Hart and A. Mas-Colell, Potential, value and consistency,, Econometrica, 57 (1989), 589. doi: 10.2307/1911054. Google Scholar

[4]

Y. A. Hwang and Y. H. Liao, Potentializability and consistency for multi-choice solutions,, Spanish Economic Review, 10 (2008), 289. Google Scholar

[5]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games,, International Journal of Game Theory, 18 (1989), 389. doi: 10.1007/BF01358800. Google Scholar

[6]

H. Moulin, On additive methods to share joint costs,, The Japanese Economic Review, 46 (1995), 303. Google Scholar

[7]

R. Myerson, Conference structures and fair allocation rules,, International Journal of Game Theory, 9 (1980), 169. doi: 10.1007/BF01781371. Google Scholar

[8]

A. van den Nouweland, J. Potters, S. Tijs and J. M. Zarzuelo, Core and related solution concepts for multi-choice games,, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289. doi: 10.1007/BF01432361. Google Scholar

[9]

L. S. Shapley, A value for $n$-person game,, in, 28 (1953), 307. Google Scholar

show all references

References:
[1]

R. J. Aumann and L. S. Shapley, "Values of Non-Atomic Games,", Princeton University Press, (1974). Google Scholar

[2]

E. Calvo and J. C. Santos, A value for multichoice games,, Mathematical Social Sciences, 40 (2000), 341. doi: 10.1016/S0165-4896(99)00054-2. Google Scholar

[3]

S. Hart and A. Mas-Colell, Potential, value and consistency,, Econometrica, 57 (1989), 589. doi: 10.2307/1911054. Google Scholar

[4]

Y. A. Hwang and Y. H. Liao, Potentializability and consistency for multi-choice solutions,, Spanish Economic Review, 10 (2008), 289. Google Scholar

[5]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games,, International Journal of Game Theory, 18 (1989), 389. doi: 10.1007/BF01358800. Google Scholar

[6]

H. Moulin, On additive methods to share joint costs,, The Japanese Economic Review, 46 (1995), 303. Google Scholar

[7]

R. Myerson, Conference structures and fair allocation rules,, International Journal of Game Theory, 9 (1980), 169. doi: 10.1007/BF01781371. Google Scholar

[8]

A. van den Nouweland, J. Potters, S. Tijs and J. M. Zarzuelo, Core and related solution concepts for multi-choice games,, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289. doi: 10.1007/BF01432361. Google Scholar

[9]

L. S. Shapley, A value for $n$-person game,, in, 28 (1953), 307. Google Scholar

[1]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[2]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[3]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[4]

Francesco Sanna Passino, Nicholas A. Heard. Modelling dynamic network evolution as a Pitman-Yor process. Foundations of Data Science, 2019, 1 (3) : 293-306. doi: 10.3934/fods.2019013

[5]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[6]

Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics & Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153

[7]

Huiling Wu, Xiuguo Wang, Yuanyuan Liu, Li Zeng. Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-34. doi: 10.3934/jimo.2019084

[8]

Yu Chen. Delegation principle for multi-agency games under ex post equilibrium. Journal of Dynamics & Games, 2018, 5 (4) : 311-329. doi: 10.3934/jdg.2018019

[9]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[10]

John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multi-point boundary value problems. Conference Publications, 2013, 2013 (special) : 273-281. doi: 10.3934/proc.2013.2013.273

[11]

Lingju Kong, Qingkai Kong. Existence of nodal solutions of multi-point boundary value problems. Conference Publications, 2009, 2009 (Special) : 457-465. doi: 10.3934/proc.2009.2009.457

[12]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

[13]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[14]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[15]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[16]

Pablo Amster, Colin Rogers. On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3277-3292. doi: 10.3934/dcds.2015.35.3277

[17]

Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497

[18]

Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics & Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411

[19]

Alexander J. Zaslavski. Turnpike properties of approximate solutions of dynamic discrete time zero-sum games. Journal of Dynamics & Games, 2014, 1 (2) : 299-330. doi: 10.3934/jdg.2014.1.299

[20]

Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]