October  2013, 9(4): 885-892. doi: 10.3934/jimo.2013.9.885

Reduction and dynamic approach for the multi-choice Shapley value

1. 

Department of Applied Mathematics, National Dong Hwa University, Hualien 974, Taiwan

2. 

Department of Applied Mathematics, National Pingtung University of Education, Pingtung 900, Taiwan

Received  March 2012 Revised  February 2013 Published  August 2013

In the framework of multi-choice games, we propose a specific reduction to construct a dynamic process for the multi-choice Shapley value introduced by Nouweland et al. [8].
Citation: Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885
References:
[1]

R. J. Aumann and L. S. Shapley, "Values of Non-Atomic Games," Princeton University Press, Princeton, N.J., 1974.  Google Scholar

[2]

E. Calvo and J. C. Santos, A value for multichoice games, Mathematical Social Sciences, 40 (2000), 341-354. doi: 10.1016/S0165-4896(99)00054-2.  Google Scholar

[3]

S. Hart and A. Mas-Colell, Potential, value and consistency, Econometrica, 57 (1989), 589-614. doi: 10.2307/1911054.  Google Scholar

[4]

Y. A. Hwang and Y. H. Liao, Potentializability and consistency for multi-choice solutions, Spanish Economic Review, 10 (2008), 289-301. Google Scholar

[5]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games, International Journal of Game Theory, 18 (1989), 389-407. doi: 10.1007/BF01358800.  Google Scholar

[6]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1995), 303-332. Google Scholar

[7]

R. Myerson, Conference structures and fair allocation rules, International Journal of Game Theory, 9 (1980), 169-182. doi: 10.1007/BF01781371.  Google Scholar

[8]

A. van den Nouweland, J. Potters, S. Tijs and J. M. Zarzuelo, Core and related solution concepts for multi-choice games, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289-311. doi: 10.1007/BF01432361.  Google Scholar

[9]

L. S. Shapley, A value for $n$-person game, in "Contributions to the Theory of Games II" (eds. H. W. Kuhn and A. W. Tucker), Annals of Mathematics Studies, 28, Princeton University Press, Princeton, (1953), 307-317.  Google Scholar

show all references

References:
[1]

R. J. Aumann and L. S. Shapley, "Values of Non-Atomic Games," Princeton University Press, Princeton, N.J., 1974.  Google Scholar

[2]

E. Calvo and J. C. Santos, A value for multichoice games, Mathematical Social Sciences, 40 (2000), 341-354. doi: 10.1016/S0165-4896(99)00054-2.  Google Scholar

[3]

S. Hart and A. Mas-Colell, Potential, value and consistency, Econometrica, 57 (1989), 589-614. doi: 10.2307/1911054.  Google Scholar

[4]

Y. A. Hwang and Y. H. Liao, Potentializability and consistency for multi-choice solutions, Spanish Economic Review, 10 (2008), 289-301. Google Scholar

[5]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games, International Journal of Game Theory, 18 (1989), 389-407. doi: 10.1007/BF01358800.  Google Scholar

[6]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1995), 303-332. Google Scholar

[7]

R. Myerson, Conference structures and fair allocation rules, International Journal of Game Theory, 9 (1980), 169-182. doi: 10.1007/BF01781371.  Google Scholar

[8]

A. van den Nouweland, J. Potters, S. Tijs and J. M. Zarzuelo, Core and related solution concepts for multi-choice games, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289-311. doi: 10.1007/BF01432361.  Google Scholar

[9]

L. S. Shapley, A value for $n$-person game, in "Contributions to the Theory of Games II" (eds. H. W. Kuhn and A. W. Tucker), Annals of Mathematics Studies, 28, Princeton University Press, Princeton, (1953), 307-317.  Google Scholar

[1]

Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics & Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021

[2]

Qianqian Wang, Minan Tang, Aimin An, Jiawei Lu, Yingying Zhao. Parameter optimal identification and dynamic behavior analysis of nonlinear model for the solution purification process of zinc hydrometallurgy. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021159

[3]

Jun Huang, Ying Peng, Ruwen Tan, Chunxiang Guo. Alliance strategy of construction and demolition waste recycling based on the modified shapley value under government regulation. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3183-3207. doi: 10.3934/jimo.2020113

[4]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[5]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[6]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[7]

Daniel Lear, David N. Reynolds, Roman Shvydkoy. Grassmannian reduction of cucker-smale systems and dynamical opinion games. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5765-5787. doi: 10.3934/dcds.2021095

[8]

Francesco Sanna Passino, Nicholas A. Heard. Modelling dynamic network evolution as a Pitman-Yor process. Foundations of Data Science, 2019, 1 (3) : 293-306. doi: 10.3934/fods.2019013

[9]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[10]

Huiling Wu, Xiuguo Wang, Yuanyuan Liu, Li Zeng. Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2857-2890. doi: 10.3934/jimo.2019084

[11]

Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics & Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153

[12]

Yu Chen. Delegation principle for multi-agency games under ex post equilibrium. Journal of Dynamics & Games, 2018, 5 (4) : 311-329. doi: 10.3934/jdg.2018019

[13]

Athanasios Kehagias. A note on the Nash equilibria of some multi-player reachability/safety games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021028

[14]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[15]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[16]

John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multi-point boundary value problems. Conference Publications, 2013, 2013 (special) : 273-281. doi: 10.3934/proc.2013.2013.273

[17]

Lingju Kong, Qingkai Kong. Existence of nodal solutions of multi-point boundary value problems. Conference Publications, 2009, 2009 (Special) : 457-465. doi: 10.3934/proc.2009.2009.457

[18]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[19]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[20]

Pablo Amster, Colin Rogers. On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3277-3292. doi: 10.3934/dcds.2015.35.3277

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]