-
Previous Article
Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity
- JIMO Home
- This Issue
-
Next Article
Equilibrium joining probabilities in observable queues with general service and setup times
A non-monotone retrospective trust-region method for unconstrained optimization
1. | School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210046, China |
2. | Department of Applied Mathematics, Nanjing Agricultural University, Nanjing 210095, China |
References:
[1] |
F. Bastin, V. Malmedy, M. Mouffe, Ph. L. Toint and D. Tomanos, A retrospective trust-region method for unconstrained optimization, Mathematical Programming, 123 (2010), 395-418.
doi: 10.1007/s10107-008-0258-1. |
[2] |
I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint, CUTE: Constrained and Unconstrained Testing Environment, ACM Transactions on Mathematical Software, 21 (1995), 123-160.
doi: 10.1145/200979.201043. |
[3] |
R. M. Chamberlain, M. J. D. Powell, C. Lemaréchal and H. C. Pedersen, The watchdog technique for forcing convergence in algorithms for constrained optimization, Mathematical Programming Studies, 16 (1982), 1-17. |
[4] |
J. Chen, W. Y. Sun and R. J. B. de Sampaio, Numerical research on the sensitivity of nonmonotone trust region algorithms to their parameters, Computers and Mathematics with Applications, 56 (2008), 2932-2940.
doi: 10.1016/j.camwa.2008.05.010. |
[5] |
A. R. Conn, N. I. M. Gould and Ph. L. Toint, "Trust-Region Methods,'' MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719857. |
[6] |
N. Y. Deng, Y. Xiao and F. J. Zhou, Nonmonotonic trust region algorithm, Journal of Optimization Theory and Applications, 76 (1993), 259-285.
doi: 10.1007/BF00939608. |
[7] |
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, Series A, 91 (2002), 201-213.
doi: 10.1007/s101070100263. |
[8] |
J. H. Fu and W. Y. Sun, Nonmonotone adaptive trust-region method for unconstrained optimization problems, Applied Mathematics and Computation, 163 (2005), 489-504.
doi: 10.1016/j.amc.2004.02.011. |
[9] |
N. I. M. Gould, D. Orban and Ph. L. Toint, CUTEr and SifDec: A Constrained and Unconstrained Testing Environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 373-394.
doi: 10.1145/962437.962438. |
[10] |
L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for newton's method, SIAM Journal on Numerical Analysis, 23 (1986), 707-716.
doi: 10.1137/0723046. |
[11] |
J. T. Mo, C. Y. Liu and S. C. Yan, A nonmonotone trust region method based on nonincreasing technique of weighted average of the successive function values, Journal of Computational and Applied Mathematics, 209 (2007), 97-108.
doi: 10.1016/j.cam.2006.10.070. |
[12] |
J. J. Moré, Recent developments in algorithms and software for trust region methods, in "Mathematical Programming: The State of the Art" (eds. A. Bachem, M. Grötschel and B. Korte), Springer, Berlin, (1983), 258-287. |
[13] |
J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, 4 (1983), 553-572.
doi: 10.1137/0904038. |
[14] |
J. Nocedal and S. J. Wright, "Numerical Optimization,'' $2^{nd}$ edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006. |
[15] |
M. J. D. Powell, A hybrid method for nonlinear equations, in "Numerical Methods for Nonlinear Algebraic Equations" (ed. P. Rabinowitz), Gordon and Breach, London, (1970), 87-114. |
[16] |
M. J. D. Powell, Convergence properties of a class of minimization algorithms, in "Nonlinear Programming, 2" (eds. O. L. Mangasarian, R. R. Meyer and S. M. Robinson), Academic Press, London, (1974), 1-27. |
[17] |
G. A. Shultz, R. B. Schnabel and R. H. Byrd, A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties, SIAM Journal on Numerical Analysis, 22 (1985), 47-67.
doi: 10.1137/0722003. |
[18] |
W. Y. Sun, Nonmonotone trust region method for solving optimization problems, Applied Mathematics and Computation, 156 (2004), 159-174.
doi: 10.1016/j.amc.2003.07.008. |
[19] |
W. Y. Sun, J. Y. Han and J. Sun, Global convergence of nonmonotone descent methods for unconstrained optimization problems, Journal of Computational and Applied Mathematics, 146 (2002), 89-98.
doi: 10.1016/S0377-0427(02)00420-X. |
[20] |
W. Y. Sun and Y. X. Yuan, "Optimization Theory and Methods. Nonlinear Programming,'' Springer Optimization and Its Applications, Vol. 1, Springer, New York, 2006. |
[21] |
W. Y. Sun and Q. Y. Zhou, An unconstrained optimization method using nonmonotone second order Goldstein's line search, Science in China Series A: Mathematics, 50 (2007), 1389-1400.
doi: 10.1007/s11425-007-0072-x. |
[22] |
Ph. L. Toint, An assessment of nonmonotone linesearch techniques for unconstrained optimization, SIAM Journal on Scientific Computing, 17 (1996), 725-739.
doi: 10.1137/S106482759427021X. |
[23] |
Ph. L. Toint, A non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints, Mathematical Programming, 77 (1997), 69-94.
doi: 10.1007/BF02614518. |
[24] |
Y. X. Yuan, On the convergence of trust region algorithms, (in Chinese) Mathematica Numerica Sinica, 16 (1994), 333-346. |
[25] |
Y. X. Yuan and W. Y. Sun, "Optimization Theory and Methods,'' (in Chinese) Science Press, Beijing, 1997. |
[26] |
H. C. Zhang and W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM Journal on Optimization, 14 (2004), 1043-1056.
doi: 10.1137/S1052623403428208. |
[27] |
D. T. Zhu, A nonmonotone trust region technique for unconstrained optimization problems, Systems Science and Mathematical Sciences, 11 (1998), 375-382. |
show all references
References:
[1] |
F. Bastin, V. Malmedy, M. Mouffe, Ph. L. Toint and D. Tomanos, A retrospective trust-region method for unconstrained optimization, Mathematical Programming, 123 (2010), 395-418.
doi: 10.1007/s10107-008-0258-1. |
[2] |
I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint, CUTE: Constrained and Unconstrained Testing Environment, ACM Transactions on Mathematical Software, 21 (1995), 123-160.
doi: 10.1145/200979.201043. |
[3] |
R. M. Chamberlain, M. J. D. Powell, C. Lemaréchal and H. C. Pedersen, The watchdog technique for forcing convergence in algorithms for constrained optimization, Mathematical Programming Studies, 16 (1982), 1-17. |
[4] |
J. Chen, W. Y. Sun and R. J. B. de Sampaio, Numerical research on the sensitivity of nonmonotone trust region algorithms to their parameters, Computers and Mathematics with Applications, 56 (2008), 2932-2940.
doi: 10.1016/j.camwa.2008.05.010. |
[5] |
A. R. Conn, N. I. M. Gould and Ph. L. Toint, "Trust-Region Methods,'' MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719857. |
[6] |
N. Y. Deng, Y. Xiao and F. J. Zhou, Nonmonotonic trust region algorithm, Journal of Optimization Theory and Applications, 76 (1993), 259-285.
doi: 10.1007/BF00939608. |
[7] |
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, Series A, 91 (2002), 201-213.
doi: 10.1007/s101070100263. |
[8] |
J. H. Fu and W. Y. Sun, Nonmonotone adaptive trust-region method for unconstrained optimization problems, Applied Mathematics and Computation, 163 (2005), 489-504.
doi: 10.1016/j.amc.2004.02.011. |
[9] |
N. I. M. Gould, D. Orban and Ph. L. Toint, CUTEr and SifDec: A Constrained and Unconstrained Testing Environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 373-394.
doi: 10.1145/962437.962438. |
[10] |
L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for newton's method, SIAM Journal on Numerical Analysis, 23 (1986), 707-716.
doi: 10.1137/0723046. |
[11] |
J. T. Mo, C. Y. Liu and S. C. Yan, A nonmonotone trust region method based on nonincreasing technique of weighted average of the successive function values, Journal of Computational and Applied Mathematics, 209 (2007), 97-108.
doi: 10.1016/j.cam.2006.10.070. |
[12] |
J. J. Moré, Recent developments in algorithms and software for trust region methods, in "Mathematical Programming: The State of the Art" (eds. A. Bachem, M. Grötschel and B. Korte), Springer, Berlin, (1983), 258-287. |
[13] |
J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, 4 (1983), 553-572.
doi: 10.1137/0904038. |
[14] |
J. Nocedal and S. J. Wright, "Numerical Optimization,'' $2^{nd}$ edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006. |
[15] |
M. J. D. Powell, A hybrid method for nonlinear equations, in "Numerical Methods for Nonlinear Algebraic Equations" (ed. P. Rabinowitz), Gordon and Breach, London, (1970), 87-114. |
[16] |
M. J. D. Powell, Convergence properties of a class of minimization algorithms, in "Nonlinear Programming, 2" (eds. O. L. Mangasarian, R. R. Meyer and S. M. Robinson), Academic Press, London, (1974), 1-27. |
[17] |
G. A. Shultz, R. B. Schnabel and R. H. Byrd, A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties, SIAM Journal on Numerical Analysis, 22 (1985), 47-67.
doi: 10.1137/0722003. |
[18] |
W. Y. Sun, Nonmonotone trust region method for solving optimization problems, Applied Mathematics and Computation, 156 (2004), 159-174.
doi: 10.1016/j.amc.2003.07.008. |
[19] |
W. Y. Sun, J. Y. Han and J. Sun, Global convergence of nonmonotone descent methods for unconstrained optimization problems, Journal of Computational and Applied Mathematics, 146 (2002), 89-98.
doi: 10.1016/S0377-0427(02)00420-X. |
[20] |
W. Y. Sun and Y. X. Yuan, "Optimization Theory and Methods. Nonlinear Programming,'' Springer Optimization and Its Applications, Vol. 1, Springer, New York, 2006. |
[21] |
W. Y. Sun and Q. Y. Zhou, An unconstrained optimization method using nonmonotone second order Goldstein's line search, Science in China Series A: Mathematics, 50 (2007), 1389-1400.
doi: 10.1007/s11425-007-0072-x. |
[22] |
Ph. L. Toint, An assessment of nonmonotone linesearch techniques for unconstrained optimization, SIAM Journal on Scientific Computing, 17 (1996), 725-739.
doi: 10.1137/S106482759427021X. |
[23] |
Ph. L. Toint, A non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints, Mathematical Programming, 77 (1997), 69-94.
doi: 10.1007/BF02614518. |
[24] |
Y. X. Yuan, On the convergence of trust region algorithms, (in Chinese) Mathematica Numerica Sinica, 16 (1994), 333-346. |
[25] |
Y. X. Yuan and W. Y. Sun, "Optimization Theory and Methods,'' (in Chinese) Science Press, Beijing, 1997. |
[26] |
H. C. Zhang and W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM Journal on Optimization, 14 (2004), 1043-1056.
doi: 10.1137/S1052623403428208. |
[27] |
D. T. Zhu, A nonmonotone trust region technique for unconstrained optimization problems, Systems Science and Mathematical Sciences, 11 (1998), 375-382. |
[1] |
Lijuan Zhao, Wenyu Sun. Nonmonotone retrospective conic trust region method for unconstrained optimization. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 309-325. doi: 10.3934/naco.2013.3.309 |
[2] |
Xin Zhang, Jie Wen, Qin Ni. Subspace trust-region algorithm with conic model for unconstrained optimization. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 223-234. doi: 10.3934/naco.2013.3.223 |
[3] |
Jun Takaki, Nobuo Yamashita. A derivative-free trust-region algorithm for unconstrained optimization with controlled error. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 117-145. doi: 10.3934/naco.2011.1.117 |
[4] |
Bülent Karasözen. Survey of trust-region derivative free optimization methods. Journal of Industrial and Management Optimization, 2007, 3 (2) : 321-334. doi: 10.3934/jimo.2007.3.321 |
[5] |
Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial and Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171 |
[6] |
Chunlin Hao, Xinwei Liu. A trust-region filter-SQP method for mathematical programs with linear complementarity constraints. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1041-1055. doi: 10.3934/jimo.2011.7.1041 |
[7] |
Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104 |
[8] |
Jirui Ma, Jinyan Fan. On convergence properties of the modified trust region method under Hölderian error bound condition. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021222 |
[9] |
Liang Zhang, Wenyu Sun, Raimundo J. B. de Sampaio, Jinyun Yuan. A wedge trust region method with self-correcting geometry for derivative-free optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 169-184. doi: 10.3934/naco.2015.5.169 |
[10] |
Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237 |
[11] |
Dan Xue, Wenyu Sun, Hongjin He. A structured trust region method for nonconvex programming with separable structure. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 283-293. doi: 10.3934/naco.2013.3.283 |
[12] |
Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35 |
[13] |
Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649 |
[14] |
José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078 |
[15] |
Arturo Hidalgo, Lourdes Tello. On a global climate model with non-monotone multivalued coalbedo. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022093 |
[16] |
Yuxiang Zhang, Shiwang Ma. Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4767-4788. doi: 10.3934/dcdsb.2020312 |
[17] |
Guanghui Zhou, Qin Ni, Meilan Zeng. A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 595-608. doi: 10.3934/jimo.2016034 |
[18] |
Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029 |
[19] |
Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255 |
[20] |
Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]