• Previous Article
    A power penalty method for the general traffic assignment problem with elastic demand
  • JIMO Home
  • This Issue
  • Next Article
    A deteriorating inventory model for an intermediary firm under return on inventory investment maximization
October  2014, 10(4): 1001-1018. doi: 10.3934/jimo.2014.10.1001

On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions

1. 

Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India, India

2. 

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia

Received  May 2012 Revised  July 2013 Published  February 2014

In the present paper, we move forward in the study of minimax fractional programming problem and establish sufficient optimality conditions under the assumptions of generalized $(H_p,r)$-invexity. Weak, strong and strict converse duality theorems are also derived for two types of dual models related to minimax fractional programming problem involving aforesaid invex functions. In order to show the existence of introduced class of functions, examples are given.
Citation: Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001
References:
[1]

I. Ahmad, Optimality conditions and duality in fractional minimax programming involving generalized $\rho$-invexity, Inter. J. Manag. Syst., 19 (2003), 165-180.

[2]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379. doi: 10.1006/jmaa.2001.7574.

[3]

T. Antczak, Generalized fractional minimax programming with $B-(p,r)$-invexity, Comp. Math. Appl., 56 (2008), 1505-1525. doi: 10.1016/j.camwa.2008.02.039.

[4]

T. Antczak, Lipschitz $r$-invex functions and nonsmooth programming, Numer. Funct. Anal. Optim., 23 (2002), 265-283. doi: 10.1081/NFA-120006693.

[5]

C. Bajona-Xandri and J. E. Martinez-Legaz, Lower subdifferentiability in minimax fractional.programming, Optimization, 45 (1999), 1-12. doi: 10.1080/02331939908844423.

[6]

S. Chandra and V. Kumar, Duality in fractional minimax programming, J. Austral. Math. Soc. ser. A, 58 (1995), 376-386. doi: 10.1017/S1446788700038362.

[7]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550. doi: 10.1016/0022-247X(81)90123-2.

[8]

Z. Liang and Z. Shi, Optimality conditions and duality for a minimax fractional programming with generalized convexity, J. Math. Anal. Appl., 277 (2003), 474-488. doi: 10.1016/S0022-247X(02)00553-X.

[9]

J. C. Liu and C. S. Wu, On minimax fractional optimality conditions with invexity, J. Math. Anal. Appl., 219 (1998), 21-35. doi: 10.1006/jmaa.1997.5786.

[10]

X. Liu, D. Yuan, S. Yang and G. Lai, Multiple objective programming involving differentiable $(H_p,r)$-invex functions, CUBO A Mathematical Journal, 13 (2011), 125-136. doi: 10.4067/S0719-06462011000100008.

[11]

W. E. Schmittendorf, Necessary conditions and sufficient conditions for static minimax problem, J. Math. Anal. Appl., 57 (1977), 683-693. doi: 10.1016/0022-247X(77)90255-4.

[12]

R. G. Schroeder, Linear programming solutions to ratio games, Operations Research, 18 (1970), 300-305. doi: 10.1287/opre.18.2.300.

[13]

I. M. Stancu-Minasian and S. Tigan, On some fractional programming models occurring in minimum-risk problem, in Generalized Convexity and Fractional Programming with Economic Applications, (Eds. A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni, S. Schaible), Springer-Verlag, Berlin, (1990). doi: 10.1007/978-3-642-46709-7_22.

[14]

I. M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications, Kluwer, Dordrecht, 1997. doi: 10.1007/978-94-009-0035-6.

[15]

J. Von Neumann, A model of general economic equilibrium, Review of Economic Studies, 13 (1945), 1-9. doi: 10.2307/2296111.

[16]

S. R. Yadav and R. N. Mukherjee, Duality for fractional minimax programming problems, J. Australian Math. Soc. Ser. B, 31 (1990), 484-492. doi: 10.1017/S0334270000006809.

[17]

D. Yuan, X. Liu, S. Yang, N. Damdin and A. Chinchuluun, Optimality conditions and duality for nonlinear programming problems involving locally $(H_p,r,\alpha)$-pre-invex functions and $H_p$-invex sets, Int. J. Pure Appl. Math., 41 (2007), 561-576.

show all references

References:
[1]

I. Ahmad, Optimality conditions and duality in fractional minimax programming involving generalized $\rho$-invexity, Inter. J. Manag. Syst., 19 (2003), 165-180.

[2]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379. doi: 10.1006/jmaa.2001.7574.

[3]

T. Antczak, Generalized fractional minimax programming with $B-(p,r)$-invexity, Comp. Math. Appl., 56 (2008), 1505-1525. doi: 10.1016/j.camwa.2008.02.039.

[4]

T. Antczak, Lipschitz $r$-invex functions and nonsmooth programming, Numer. Funct. Anal. Optim., 23 (2002), 265-283. doi: 10.1081/NFA-120006693.

[5]

C. Bajona-Xandri and J. E. Martinez-Legaz, Lower subdifferentiability in minimax fractional.programming, Optimization, 45 (1999), 1-12. doi: 10.1080/02331939908844423.

[6]

S. Chandra and V. Kumar, Duality in fractional minimax programming, J. Austral. Math. Soc. ser. A, 58 (1995), 376-386. doi: 10.1017/S1446788700038362.

[7]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550. doi: 10.1016/0022-247X(81)90123-2.

[8]

Z. Liang and Z. Shi, Optimality conditions and duality for a minimax fractional programming with generalized convexity, J. Math. Anal. Appl., 277 (2003), 474-488. doi: 10.1016/S0022-247X(02)00553-X.

[9]

J. C. Liu and C. S. Wu, On minimax fractional optimality conditions with invexity, J. Math. Anal. Appl., 219 (1998), 21-35. doi: 10.1006/jmaa.1997.5786.

[10]

X. Liu, D. Yuan, S. Yang and G. Lai, Multiple objective programming involving differentiable $(H_p,r)$-invex functions, CUBO A Mathematical Journal, 13 (2011), 125-136. doi: 10.4067/S0719-06462011000100008.

[11]

W. E. Schmittendorf, Necessary conditions and sufficient conditions for static minimax problem, J. Math. Anal. Appl., 57 (1977), 683-693. doi: 10.1016/0022-247X(77)90255-4.

[12]

R. G. Schroeder, Linear programming solutions to ratio games, Operations Research, 18 (1970), 300-305. doi: 10.1287/opre.18.2.300.

[13]

I. M. Stancu-Minasian and S. Tigan, On some fractional programming models occurring in minimum-risk problem, in Generalized Convexity and Fractional Programming with Economic Applications, (Eds. A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni, S. Schaible), Springer-Verlag, Berlin, (1990). doi: 10.1007/978-3-642-46709-7_22.

[14]

I. M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications, Kluwer, Dordrecht, 1997. doi: 10.1007/978-94-009-0035-6.

[15]

J. Von Neumann, A model of general economic equilibrium, Review of Economic Studies, 13 (1945), 1-9. doi: 10.2307/2296111.

[16]

S. R. Yadav and R. N. Mukherjee, Duality for fractional minimax programming problems, J. Australian Math. Soc. Ser. B, 31 (1990), 484-492. doi: 10.1017/S0334270000006809.

[17]

D. Yuan, X. Liu, S. Yang, N. Damdin and A. Chinchuluun, Optimality conditions and duality for nonlinear programming problems involving locally $(H_p,r,\alpha)$-pre-invex functions and $H_p$-invex sets, Int. J. Pure Appl. Math., 41 (2007), 561-576.

[1]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[2]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089

[3]

Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial and Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385

[4]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[5]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[6]

Najeeb Abdulaleem. $ V $-$ E $-invexity in $ E $-differentiable multiobjective programming. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 427-443. doi: 10.3934/naco.2021014

[7]

Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial and Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881

[8]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[9]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure and Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[10]

Sarita Sharma, Anurag Jayswal, Sarita Choudhury. Sufficiency and mixed type duality for multiobjective variational control problems involving α-V-univexity. Evolution Equations and Control Theory, 2017, 6 (1) : 93-109. doi: 10.3934/eect.2017006

[11]

Aleksandar Jović. Saddle-point type optimality criteria, duality and a new approach for solving nonsmooth fractional continuous-time programming problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022025

[12]

Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 301-323. doi: 10.3934/naco.2017020

[13]

Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003

[14]

Xinmin Yang. On second order symmetric duality in nondifferentiable multiobjective programming. Journal of Industrial and Management Optimization, 2009, 5 (4) : 697-703. doi: 10.3934/jimo.2009.5.697

[15]

Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055

[16]

Xinmin Yang, Xiaoqi Yang. A note on mixed type converse duality in multiobjective programming problems. Journal of Industrial and Management Optimization, 2010, 6 (3) : 497-500. doi: 10.3934/jimo.2010.6.497

[17]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1873-1884. doi: 10.3934/jimo.2019033

[18]

Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 131-142. doi: 10.3934/jimo.2013.9.131

[19]

Matthew H. Henry, Yacov Y. Haimes. Robust multiobjective dynamic programming: Minimax envelopes for efficient decisionmaking under scenario uncertainty. Journal of Industrial and Management Optimization, 2009, 5 (4) : 791-824. doi: 10.3934/jimo.2009.5.791

[20]

Cheng Lu, Zhenbo Wang, Wenxun Xing, Shu-Cherng Fang. Extended canonical duality and conic programming for solving 0-1 quadratic programming problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 779-793. doi: 10.3934/jimo.2010.6.779

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (1)

[Back to Top]