• Previous Article
    A deteriorating inventory model for an intermediary firm under return on inventory investment maximization
  • JIMO Home
  • This Issue
  • Next Article
    A power penalty method for the general traffic assignment problem with elastic demand
October  2014, 10(4): 1001-1018. doi: 10.3934/jimo.2014.10.1001

On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions

1. 

Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India, India

2. 

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia

Received  May 2012 Revised  July 2013 Published  February 2014

In the present paper, we move forward in the study of minimax fractional programming problem and establish sufficient optimality conditions under the assumptions of generalized $(H_p,r)$-invexity. Weak, strong and strict converse duality theorems are also derived for two types of dual models related to minimax fractional programming problem involving aforesaid invex functions. In order to show the existence of introduced class of functions, examples are given.
Citation: Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001
References:
[1]

I. Ahmad, Optimality conditions and duality in fractional minimax programming involving generalized $\rho$-invexity,, Inter. J. Manag. Syst., 19 (2003), 165. Google Scholar

[2]

T. Antczak, $(p, r)$-invex sets and functions,, J. Math. Anal. Appl., 263 (2001), 355. doi: 10.1006/jmaa.2001.7574. Google Scholar

[3]

T. Antczak, Generalized fractional minimax programming with $B-(p,r)$-invexity,, Comp. Math. Appl., 56 (2008), 1505. doi: 10.1016/j.camwa.2008.02.039. Google Scholar

[4]

T. Antczak, Lipschitz $r$-invex functions and nonsmooth programming,, Numer. Funct. Anal. Optim., 23 (2002), 265. doi: 10.1081/NFA-120006693. Google Scholar

[5]

C. Bajona-Xandri and J. E. Martinez-Legaz, Lower subdifferentiability in minimax fractional.programming,, Optimization, 45 (1999), 1. doi: 10.1080/02331939908844423. Google Scholar

[6]

S. Chandra and V. Kumar, Duality in fractional minimax programming,, J. Austral. Math. Soc. ser. A, 58 (1995), 376. doi: 10.1017/S1446788700038362. Google Scholar

[7]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions,, J. Math. Anal. Appl., 80 (1981), 545. doi: 10.1016/0022-247X(81)90123-2. Google Scholar

[8]

Z. Liang and Z. Shi, Optimality conditions and duality for a minimax fractional programming with generalized convexity,, J. Math. Anal. Appl., 277 (2003), 474. doi: 10.1016/S0022-247X(02)00553-X. Google Scholar

[9]

J. C. Liu and C. S. Wu, On minimax fractional optimality conditions with invexity,, J. Math. Anal. Appl., 219 (1998), 21. doi: 10.1006/jmaa.1997.5786. Google Scholar

[10]

X. Liu, D. Yuan, S. Yang and G. Lai, Multiple objective programming involving differentiable $(H_p,r)$-invex functions,, CUBO A Mathematical Journal, 13 (2011), 125. doi: 10.4067/S0719-06462011000100008. Google Scholar

[11]

W. E. Schmittendorf, Necessary conditions and sufficient conditions for static minimax problem,, J. Math. Anal. Appl., 57 (1977), 683. doi: 10.1016/0022-247X(77)90255-4. Google Scholar

[12]

R. G. Schroeder, Linear programming solutions to ratio games,, Operations Research, 18 (1970), 300. doi: 10.1287/opre.18.2.300. Google Scholar

[13]

I. M. Stancu-Minasian and S. Tigan, On some fractional programming models occurring in minimum-risk problem,, in Generalized Convexity and Fractional Programming with Economic Applications, (1990). doi: 10.1007/978-3-642-46709-7_22. Google Scholar

[14]

I. M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications,, Kluwer, (1997). doi: 10.1007/978-94-009-0035-6. Google Scholar

[15]

J. Von Neumann, A model of general economic equilibrium,, Review of Economic Studies, 13 (1945), 1. doi: 10.2307/2296111. Google Scholar

[16]

S. R. Yadav and R. N. Mukherjee, Duality for fractional minimax programming problems,, J. Australian Math. Soc. Ser. B, 31 (1990), 484. doi: 10.1017/S0334270000006809. Google Scholar

[17]

D. Yuan, X. Liu, S. Yang, N. Damdin and A. Chinchuluun, Optimality conditions and duality for nonlinear programming problems involving locally $(H_p,r,\alpha)$-pre-invex functions and $H_p$-invex sets,, Int. J. Pure Appl. Math., 41 (2007), 561. Google Scholar

show all references

References:
[1]

I. Ahmad, Optimality conditions and duality in fractional minimax programming involving generalized $\rho$-invexity,, Inter. J. Manag. Syst., 19 (2003), 165. Google Scholar

[2]

T. Antczak, $(p, r)$-invex sets and functions,, J. Math. Anal. Appl., 263 (2001), 355. doi: 10.1006/jmaa.2001.7574. Google Scholar

[3]

T. Antczak, Generalized fractional minimax programming with $B-(p,r)$-invexity,, Comp. Math. Appl., 56 (2008), 1505. doi: 10.1016/j.camwa.2008.02.039. Google Scholar

[4]

T. Antczak, Lipschitz $r$-invex functions and nonsmooth programming,, Numer. Funct. Anal. Optim., 23 (2002), 265. doi: 10.1081/NFA-120006693. Google Scholar

[5]

C. Bajona-Xandri and J. E. Martinez-Legaz, Lower subdifferentiability in minimax fractional.programming,, Optimization, 45 (1999), 1. doi: 10.1080/02331939908844423. Google Scholar

[6]

S. Chandra and V. Kumar, Duality in fractional minimax programming,, J. Austral. Math. Soc. ser. A, 58 (1995), 376. doi: 10.1017/S1446788700038362. Google Scholar

[7]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions,, J. Math. Anal. Appl., 80 (1981), 545. doi: 10.1016/0022-247X(81)90123-2. Google Scholar

[8]

Z. Liang and Z. Shi, Optimality conditions and duality for a minimax fractional programming with generalized convexity,, J. Math. Anal. Appl., 277 (2003), 474. doi: 10.1016/S0022-247X(02)00553-X. Google Scholar

[9]

J. C. Liu and C. S. Wu, On minimax fractional optimality conditions with invexity,, J. Math. Anal. Appl., 219 (1998), 21. doi: 10.1006/jmaa.1997.5786. Google Scholar

[10]

X. Liu, D. Yuan, S. Yang and G. Lai, Multiple objective programming involving differentiable $(H_p,r)$-invex functions,, CUBO A Mathematical Journal, 13 (2011), 125. doi: 10.4067/S0719-06462011000100008. Google Scholar

[11]

W. E. Schmittendorf, Necessary conditions and sufficient conditions for static minimax problem,, J. Math. Anal. Appl., 57 (1977), 683. doi: 10.1016/0022-247X(77)90255-4. Google Scholar

[12]

R. G. Schroeder, Linear programming solutions to ratio games,, Operations Research, 18 (1970), 300. doi: 10.1287/opre.18.2.300. Google Scholar

[13]

I. M. Stancu-Minasian and S. Tigan, On some fractional programming models occurring in minimum-risk problem,, in Generalized Convexity and Fractional Programming with Economic Applications, (1990). doi: 10.1007/978-3-642-46709-7_22. Google Scholar

[14]

I. M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications,, Kluwer, (1997). doi: 10.1007/978-94-009-0035-6. Google Scholar

[15]

J. Von Neumann, A model of general economic equilibrium,, Review of Economic Studies, 13 (1945), 1. doi: 10.2307/2296111. Google Scholar

[16]

S. R. Yadav and R. N. Mukherjee, Duality for fractional minimax programming problems,, J. Australian Math. Soc. Ser. B, 31 (1990), 484. doi: 10.1017/S0334270000006809. Google Scholar

[17]

D. Yuan, X. Liu, S. Yang, N. Damdin and A. Chinchuluun, Optimality conditions and duality for nonlinear programming problems involving locally $(H_p,r,\alpha)$-pre-invex functions and $H_p$-invex sets,, Int. J. Pure Appl. Math., 41 (2007), 561. Google Scholar

[1]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[2]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089

[3]

Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial & Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385

[4]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[5]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[6]

Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial & Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881

[7]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[8]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[9]

Sarita Sharma, Anurag Jayswal, Sarita Choudhury. Sufficiency and mixed type duality for multiobjective variational control problems involving α-V-univexity. Evolution Equations & Control Theory, 2017, 6 (1) : 93-109. doi: 10.3934/eect.2017006

[10]

Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003

[11]

Xinmin Yang. On second order symmetric duality in nondifferentiable multiobjective programming. Journal of Industrial & Management Optimization, 2009, 5 (4) : 697-703. doi: 10.3934/jimo.2009.5.697

[12]

Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 301-323. doi: 10.3934/naco.2017020

[13]

Xinmin Yang, Xiaoqi Yang. A note on mixed type converse duality in multiobjective programming problems. Journal of Industrial & Management Optimization, 2010, 6 (3) : 497-500. doi: 10.3934/jimo.2010.6.497

[14]

Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 131-142. doi: 10.3934/jimo.2013.9.131

[15]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019033

[16]

Cheng Lu, Zhenbo Wang, Wenxun Xing, Shu-Cherng Fang. Extended canonical duality and conic programming for solving 0-1 quadratic programming problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 779-793. doi: 10.3934/jimo.2010.6.779

[17]

Matthew H. Henry, Yacov Y. Haimes. Robust multiobjective dynamic programming: Minimax envelopes for efficient decisionmaking under scenario uncertainty. Journal of Industrial & Management Optimization, 2009, 5 (4) : 791-824. doi: 10.3934/jimo.2009.5.791

[18]

Xian-Jun Long, Nan-Jing Huang, Zhi-Bin Liu. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. Journal of Industrial & Management Optimization, 2008, 4 (2) : 287-298. doi: 10.3934/jimo.2008.4.287

[19]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[20]

Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial & Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

[Back to Top]