October  2014, 10(4): 1031-1039. doi: 10.3934/jimo.2014.10.1031

Bounds for the greatest eigenvalue of positive tensors

1. 

Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, China, China

Received  October 2012 Revised  August 2013 Published  February 2014

Higher order tensors are generalizations of matrices. In this paper, we extend the bounds for the greatest eigenvalue of positive square matrices to positive tensors, and give further results on the bounds for the greatest eigenvector of positive tensors.
Citation: Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031
References:
[1]

S. R. Bulò and M. Pelillo, A generalization of the Motzkin-Straus theorem to hypergraphs, Optim. Lett., 3 (2009), 187-295. doi: 10.1007/s11590-008-0108-3.

[2]

S. R. Bulò and M. Pelillo, New bounds on the clique number of graphs based on spectral hypergraph theory, in Learning and Intelligent Optimization, (ed. T. Stützle), Springer Verlag, Berlin, (2009), 45-48.

[3]

K. C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350 (2009), 416-422. doi: 10.1016/j.jmaa.2008.09.067.

[4]

K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors, Comm. Math. Sci., 6 (2008), 507-520. doi: 10.4310/CMS.2008.v6.n2.a12.

[5]

L. Collatz, Einschliessungssatz die charakteristischen Zahlen von Matrizen, Math. Zeit., 48 (1942), 221-226. doi: 10.1007/BF01180013.

[6]

J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Department of Mathematics, University of South Carolina, June 2011, Arxiv preprint arXiv:1106.4856, (2011). doi: 10.1016/j.laa.2011.11.018.

[7]

P. Drineas and L. H. Lim, A Multilinear Spectral Theory of Hyper-Graphs and Expander Hypergraphs,, 2005., (). 

[8]

S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, to appear in Linear Algebra and Its Applications, 438 (2013), 738-749. doi: 10.1016/j.laa.2011.02.042.

[9]

S. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, Journal of Combinatorial Optimization, 24 (2012), 564-579. doi: 10.1007/s10878-011-9407-1.

[10]

W. Li and M. Ng, Existence and Uniqueness of Stationary Probability Vector of a Transition Probability Tensor, Technical report, Department of Mathematics, The Hong Kong Baptist University, 2011.

[11]

L. H. Lim, Multilinear Pagerank: Measuring Higher Order Connectivity in Linked Objects, The internet: Today and Tomorrow, 2005.

[12]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in Proceedings of the First IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), (2005), 129-132.

[13]

Y. Liu, G. Zhou and N. F. Ibrahim, An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor, Journal of Computational and Applied Mathematics, 235 (2010), 286-292. doi: 10.1016/j.cam.2010.06.002.

[14]

H. Minc, Nonnegative Matrices, New York: John Wiley and Sons, Inc, 1988.

[15]

M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099. doi: 10.1137/09074838X.

[16]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[17]

L. Qi, Eigenvalue and invariants of a tensor, J. Math. Anal. Appl., 325 (2007), 1363-1377. doi: 10.1016/j.jmaa.2006.02.071.

[18]

L. Qi, W. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526. doi: 10.1007/s11464-007-0031-4.

[19]

Y. N. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517-2530. doi: 10.1137/090778766.

[20]

Y. N. Yang, Q. Z. Yang and Y. G. Li, An algorithm to find the spectral radius of nonnegative tensors and its convergence analysis, arXiv:1102.2668, (2011).

[21]

F. X. Zhang, The smoothing method for finding the largest eigenvalue of nonnegative matrices, Numerical Mathematics: A Journal of Chinese Universities, 23 (2001), 45-55, Chinese Series.

[22]

L. Zhang and L. Qi, Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor, Numercal Linear Algebra with Applications, 19 (2012), 830-841. doi: 10.1002/nla.822.

show all references

References:
[1]

S. R. Bulò and M. Pelillo, A generalization of the Motzkin-Straus theorem to hypergraphs, Optim. Lett., 3 (2009), 187-295. doi: 10.1007/s11590-008-0108-3.

[2]

S. R. Bulò and M. Pelillo, New bounds on the clique number of graphs based on spectral hypergraph theory, in Learning and Intelligent Optimization, (ed. T. Stützle), Springer Verlag, Berlin, (2009), 45-48.

[3]

K. C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350 (2009), 416-422. doi: 10.1016/j.jmaa.2008.09.067.

[4]

K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors, Comm. Math. Sci., 6 (2008), 507-520. doi: 10.4310/CMS.2008.v6.n2.a12.

[5]

L. Collatz, Einschliessungssatz die charakteristischen Zahlen von Matrizen, Math. Zeit., 48 (1942), 221-226. doi: 10.1007/BF01180013.

[6]

J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Department of Mathematics, University of South Carolina, June 2011, Arxiv preprint arXiv:1106.4856, (2011). doi: 10.1016/j.laa.2011.11.018.

[7]

P. Drineas and L. H. Lim, A Multilinear Spectral Theory of Hyper-Graphs and Expander Hypergraphs,, 2005., (). 

[8]

S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, to appear in Linear Algebra and Its Applications, 438 (2013), 738-749. doi: 10.1016/j.laa.2011.02.042.

[9]

S. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, Journal of Combinatorial Optimization, 24 (2012), 564-579. doi: 10.1007/s10878-011-9407-1.

[10]

W. Li and M. Ng, Existence and Uniqueness of Stationary Probability Vector of a Transition Probability Tensor, Technical report, Department of Mathematics, The Hong Kong Baptist University, 2011.

[11]

L. H. Lim, Multilinear Pagerank: Measuring Higher Order Connectivity in Linked Objects, The internet: Today and Tomorrow, 2005.

[12]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in Proceedings of the First IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), (2005), 129-132.

[13]

Y. Liu, G. Zhou and N. F. Ibrahim, An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor, Journal of Computational and Applied Mathematics, 235 (2010), 286-292. doi: 10.1016/j.cam.2010.06.002.

[14]

H. Minc, Nonnegative Matrices, New York: John Wiley and Sons, Inc, 1988.

[15]

M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099. doi: 10.1137/09074838X.

[16]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[17]

L. Qi, Eigenvalue and invariants of a tensor, J. Math. Anal. Appl., 325 (2007), 1363-1377. doi: 10.1016/j.jmaa.2006.02.071.

[18]

L. Qi, W. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526. doi: 10.1007/s11464-007-0031-4.

[19]

Y. N. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517-2530. doi: 10.1137/090778766.

[20]

Y. N. Yang, Q. Z. Yang and Y. G. Li, An algorithm to find the spectral radius of nonnegative tensors and its convergence analysis, arXiv:1102.2668, (2011).

[21]

F. X. Zhang, The smoothing method for finding the largest eigenvalue of nonnegative matrices, Numerical Mathematics: A Journal of Chinese Universities, 23 (2001), 45-55, Chinese Series.

[22]

L. Zhang and L. Qi, Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor, Numercal Linear Algebra with Applications, 19 (2012), 830-841. doi: 10.1002/nla.822.

[1]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[2]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[3]

Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015

[4]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[5]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[6]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial and Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[7]

Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022073

[8]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[9]

Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016

[10]

Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042

[11]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[12]

Fan Wu. Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor. Evolution Equations and Control Theory, 2021, 10 (3) : 511-518. doi: 10.3934/eect.2020078

[13]

Ya Li, ShouQiang Du, YuanYuan Chen. Modified spectral PRP conjugate gradient method for solving tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022, 18 (1) : 157-172. doi: 10.3934/jimo.2020147

[14]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems and Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[15]

Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021146

[16]

M. S. Lee, B. S. Goh, H. G. Harno, K. H. Lim. On a two-phase approximate greatest descent method for nonlinear optimization with equality constraints. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 315-326. doi: 10.3934/naco.2018020

[17]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[18]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial and Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[19]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[20]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]