Citation: |
[1] |
M. Breton, G. Zaccour and M. Zahaf, A game-theoretic formulation of joint implementation of environmental projects, European J. Oper. Res., 168 (2006), 221-239.doi: 10.1016/j.ejor.2004.04.026. |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983. |
[3] |
J. Contreras, M. Klusch and J. B. Krawczyk, Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets, IEEE. T. Power. Syst., 19 (2004), 195-206.doi: 10.1109/TPWRS.2003.820692. |
[4] |
G. Debreu, A social equilibrium existence theorem, Proc. Natl. Acad. Sci. U. S. A., 38 (1952), 886-893.doi: 10.1073/pnas.38.10.886. |
[5] |
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, I, Springer-Verlag, New York, 2003. |
[6] |
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol II, Springer-Verlag, New York, 2003. |
[7] |
F. Facchinei, A. Fischer and V. Piccialli, On generalized Nash games and variational inequalities, Oper. Res. Lett., 35 (2007), 159-164.doi: 10.1016/j.orl.2006.03.004. |
[8] |
F. Facchinei, A. Fischer and C. Kanzow, Regularity properties of a semismooth reformulation of variational inequalities, SIAM J. Optim., 8 (1998), 850-869.doi: 10.1137/S1052623496298194. |
[9] |
F. Facchinei, A. Fischer and V. Piccialli, Generalized Nash equilibrium problems and Newton methods, Math. Program., 117 (2009), 163-194.doi: 10.1007/s10107-007-0160-2. |
[10] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Comput. Manag. Sci., 8 (2011), 201-218.doi: 10.1007/s10287-009-0097-4. |
[11] |
G. Gürkan and J. S. Pang, Approximations of Nash equilibria, Math. Program., 117 (2009), 223-253.doi: 10.1007/s10107-007-0156-y. |
[12] |
P. T. Harker, Generalized Nash games and quasi-variational inequalities, European J. Oper. Res., 54 (1991), 81-94.doi: 10.1016/0377-2217(91)90325-P. |
[13] |
A. V. Heusinger and C. Kanzow, Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput. Optim. Appl., 43 (2009), 353-377.doi: 10.1007/s10589-007-9145-6. |
[14] |
A. Kesselman, S. Leonardi and V. Bonifaci, Game-theoretic analysis of internet switching with selfish users, Theoret. Comput. Sci., 452 (2012), 107-116.doi: 10.1016/j.tcs.2012.05.029. |
[15] |
J. B. Krawczyk and S. Uryasev, Relaxation algorithms to find Nash equilibria with economic applications, Environ. Model. Assess., 5 (2000), 63-73. |
[16] |
T. D. Luca, F. Facchinei and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Program., 75 (1996), 407-439.doi: 10.1007/BF02592192. |
[17] |
R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control. Optim., 15 (1977), 959-972.doi: 10.1137/0315061. |
[18] |
J. S. Pang, G. Scutari, F. Facchinei and C. Wang, Distributed power allocation with rate constraints in Gaussian parallel interference channels, IEEE Trans. Inform. Theory, 54 (2008), 3471-3489.doi: 10.1109/TIT.2008.926399. |
[19] |
J. S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, Comput. Manag. Sci., 2 (2005), 21-56.doi: 10.1007/s10287-004-0010-0. |
[20] |
B. Panicucci, M. Pappalardo and M. Passacantando, On finite-dimensional generalized variational inequalities, J. Ind. Manag. Optim., 2 (2006), 43-53.doi: 10.3934/jimo.2006.2.43. |
[21] |
L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res., 18 (1993), 227-244.doi: 10.1287/moor.18.1.227. |
[22] |
L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Program, 58 (1993), 353-367.doi: 10.1007/BF01581275. |
[23] |
S. M. Robinson, Shadow prices for measures of effectiveness, I: Linear model, Oper. Res., 41 (1993), 518-535.doi: 10.1287/opre.41.3.518. |
[24] |
S. M. Robinson, Shadow prices for measures of effectiveness, II: General model, Oper. Res., 41 (1993), 536-548.doi: 10.1287/opre.41.3.536. |
[25] |
R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.doi: 10.1007/978-3-642-02431-3. |
[26] |
S. Uryasev and R. Y. Rubinstein, On relaxation algorithms in computation of noncooperative equilibria, IEEE Trans. Automat. Control., 39 (1994), 1263-1267.doi: 10.1109/9.293193. |
[27] |
J. Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112. |