October  2014, 10(4): 1109-1127. doi: 10.3934/jimo.2014.10.1109

CVaR proxies for minimizing scenario-based Value-at-Risk

1. 

Quantitative Research, Risk Analytics, Business Analytics, IBM, 185 Spadina Avenue, Toronto, ON M5T2C6, Canada, Canada

Received  September 2012 Revised  October 2013 Published  February 2014

Minimizing VaR, as estimated from a set of scenarios, is a difficult integer programming problem. Solving the problem to optimality may demand using only a small number of scenarios, which leads to poor out-of-sample performance. A simple alternative is to minimize CVaR for several different quantile levels and then to select the optimized portfolio with the best out-of-sample VaR. We show that this approach is both practical and effective, outperforming integer programming and an existing VaR minimization heuristic. The CVaR quantile level acts as a regularization parameter and, therefore, its ideal value depends on the number of scenarios and other problem characteristics.
Citation: Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109
References:
[1]

C. Acerbi and D. Tasche, Expected Shortfall: A natural coherent alternative to Value at Risk,, Economic Notes, 31 (2002), 379.  doi: 10.1111/1468-0300.00091.  Google Scholar

[2]

C. Acerbi and D. Tasche, On the coherence of expected shortfall,, Journal of Banking & Finance, 26 (2002), 1487.  doi: 10.1016/S0378-4266(02)00283-2.  Google Scholar

[3]

B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics,, SIAM Publishers, (2008).  doi: 10.1137/1.9780898719062.  Google Scholar

[4]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.  doi: 10.1111/1467-9965.00068.  Google Scholar

[5]

V. Brazauskas, B. L. Jones, M. L. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view,, Journal of Statistical Planning and Inference, 138 (2008), 3590.  doi: 10.1016/j.jspi.2005.11.011.  Google Scholar

[6]

J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma and C. G. de Vries, Subadditivity re-examined: The case for Value-at-Risk,, preprint, (2005).   Google Scholar

[7]

V. DeMiguel, L. Garlappi, F. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms,, Management Science, 55 (2009), 798.  doi: 10.1287/mnsc.1080.0986.  Google Scholar

[8]

K. Høyland, M. Kaut and S. W. Wallace, A heuristic for moment-matching scenario generation,, Computational Optimization and Applications, 24 (2003), 169.  doi: 10.1023/A:1021853807313.  Google Scholar

[9]

N. Larsen, H. Mausser and S. Uryasev, Algorithms for optimization of Value-at-Risk,, in Financial Engineering, (2002), 19.  doi: 10.1007/978-1-4757-5226-7_2.  Google Scholar

[10]

J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints,, SIAM Journal on Optimization, 19 (2008), 674.  doi: 10.1137/070702928.  Google Scholar

[11]

H. Mausser and O. Romanko, Bias, exploitation and proxies in scenario-based risk minimization,, Optimization, 61 (2012), 1191.  doi: 10.1080/02331934.2012.684795.  Google Scholar

[12]

H. Mausser and D. Rosen, Efficient risk/return frontiers for credit risk,, Journal of Risk Finance, 2 (2000), 66.  doi: 10.1108/eb022948.  Google Scholar

[13]

K. Natarajan, D. Pachamanova and M. Sim, Incorporating asymmetric distribution information in robust value-at-risk optimization,, Management Science, 54 (2008), 573.  doi: 10.1287/mnsc.1070.0769.  Google Scholar

[14]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM Journal on Optimization, 17 (2006), 969.  doi: 10.1137/050622328.  Google Scholar

[15]

B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Computational study of a chance constrained portfolio selection problem,, Optimization Online, (2008).   Google Scholar

[16]

B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: Theory and applications,, Journal of Optimization Theory and Applications, 142 (2009), 399.  doi: 10.1007/s10957-009-9523-6.  Google Scholar

[17]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21.   Google Scholar

[18]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions,, Journal of Banking & Finance, 26 (2002), 1443.  doi: 10.1016/S0378-4266(02)00271-6.  Google Scholar

[19]

D. Wuertz and H. Katzgraber, Precise Finite-Sample Quantiles of the Jarque-Bera Adjusted Lagrange Multiplier Test,, MPRA Paper No. 19155, (1915).   Google Scholar

show all references

References:
[1]

C. Acerbi and D. Tasche, Expected Shortfall: A natural coherent alternative to Value at Risk,, Economic Notes, 31 (2002), 379.  doi: 10.1111/1468-0300.00091.  Google Scholar

[2]

C. Acerbi and D. Tasche, On the coherence of expected shortfall,, Journal of Banking & Finance, 26 (2002), 1487.  doi: 10.1016/S0378-4266(02)00283-2.  Google Scholar

[3]

B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics,, SIAM Publishers, (2008).  doi: 10.1137/1.9780898719062.  Google Scholar

[4]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.  doi: 10.1111/1467-9965.00068.  Google Scholar

[5]

V. Brazauskas, B. L. Jones, M. L. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view,, Journal of Statistical Planning and Inference, 138 (2008), 3590.  doi: 10.1016/j.jspi.2005.11.011.  Google Scholar

[6]

J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma and C. G. de Vries, Subadditivity re-examined: The case for Value-at-Risk,, preprint, (2005).   Google Scholar

[7]

V. DeMiguel, L. Garlappi, F. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms,, Management Science, 55 (2009), 798.  doi: 10.1287/mnsc.1080.0986.  Google Scholar

[8]

K. Høyland, M. Kaut and S. W. Wallace, A heuristic for moment-matching scenario generation,, Computational Optimization and Applications, 24 (2003), 169.  doi: 10.1023/A:1021853807313.  Google Scholar

[9]

N. Larsen, H. Mausser and S. Uryasev, Algorithms for optimization of Value-at-Risk,, in Financial Engineering, (2002), 19.  doi: 10.1007/978-1-4757-5226-7_2.  Google Scholar

[10]

J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints,, SIAM Journal on Optimization, 19 (2008), 674.  doi: 10.1137/070702928.  Google Scholar

[11]

H. Mausser and O. Romanko, Bias, exploitation and proxies in scenario-based risk minimization,, Optimization, 61 (2012), 1191.  doi: 10.1080/02331934.2012.684795.  Google Scholar

[12]

H. Mausser and D. Rosen, Efficient risk/return frontiers for credit risk,, Journal of Risk Finance, 2 (2000), 66.  doi: 10.1108/eb022948.  Google Scholar

[13]

K. Natarajan, D. Pachamanova and M. Sim, Incorporating asymmetric distribution information in robust value-at-risk optimization,, Management Science, 54 (2008), 573.  doi: 10.1287/mnsc.1070.0769.  Google Scholar

[14]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM Journal on Optimization, 17 (2006), 969.  doi: 10.1137/050622328.  Google Scholar

[15]

B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Computational study of a chance constrained portfolio selection problem,, Optimization Online, (2008).   Google Scholar

[16]

B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: Theory and applications,, Journal of Optimization Theory and Applications, 142 (2009), 399.  doi: 10.1007/s10957-009-9523-6.  Google Scholar

[17]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21.   Google Scholar

[18]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions,, Journal of Banking & Finance, 26 (2002), 1443.  doi: 10.1016/S0378-4266(02)00271-6.  Google Scholar

[19]

D. Wuertz and H. Katzgraber, Precise Finite-Sample Quantiles of the Jarque-Bera Adjusted Lagrange Multiplier Test,, MPRA Paper No. 19155, (1915).   Google Scholar

[1]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[2]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[3]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[4]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[5]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[10]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[11]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[12]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[13]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[14]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[15]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[16]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[17]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[18]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[19]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[20]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]