Citation: |
[1] |
P. Brandimarte, Numerical Methods in Finance: A MATLAB-based introduction, Second edition. Statistics in Practice. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006.doi: 10.1002/0470080493. |
[2] |
W. Brock, Sensitivity of optimal growth paths with respect to a change in target stocks, Zeitchrift für National Ökonomie, Supplementum, 1 (1971), 73-89. |
[3] |
B. D. Craven, Convergence of discrete approximations for constrained minimizatiion, Journal of the Australian Mathematical Society, Series B, 36 (1994), 50-59.doi: 10.1017/S0334270000010237. |
[4] |
B. D. Craven, Control and Optimization, Chapman & Hall, London, 1995. |
[5] |
B. D. Craven, Optimal control and invexity, Computers and Mathematics with Applications, 35 (1998), 17-25.doi: 10.1016/S0898-1221(98)00002-9. |
[6] |
B. D. Craven, Optimal control of an economic model with a small stochastic term, Pacific Journal of Optimization, 1 (2005), 233-241. |
[7] |
B. D. Craven, K. de Haas and J. Wettenhall, Computing optimal control, Dynamics of Continuous, Discrete and Impulsive Systems, 4 (1988), 601-615. |
[8] |
B. D. Craven and S. M. N. Islam, Computing optimal control on MATLAB: The scom package and economic growth models, in Optimisation and Related Topics, (Ballarat/Melbourne, 1999), 61-70, Appl. Optim., Volume 47 in the Series Applied Optimization, Kluwer Academic Publishers, Dordrecht, 2001. |
[9] |
B. D. Craven and S. M. N. Islam, Optimization in Economics and Finance, Springer, Dordrecht, 2005. |
[10] |
K. Cuthbertson, Quantitative Financial Economics: Stocks, Bonds, and Foreign Exchange, John Wiley, Chichester, England, 1996. |
[11] |
B. Davis and D. Elzinga, The solution of an optimal control problem in financial modeling, Operations Research, 19 (1971), 1419-1433.doi: 10.1287/opre.19.6.1419. |
[12] |
W. Diewert, Generalized Concavity and Economics, in Generalized Concavity in Optimization and Economics, S. Schaible and W. T. Ziemba (eds.), Academic Press, New York, 1981. |
[13] |
P. Dutta, On specifying the parameters of a development plan, in Capital, Investment and Development, K. Basu, M. Majumdar and T. Mitra (eds.), Blackwell, Oxford, 1993, 75-98. |
[14] |
K. Fox, J. K. Sengupta and E. Thorbecke, The Theory of Quantitative Economic Policy with Applications to Economic Growth, Stabilization and Planning, North-Holland, Amsterdam, 1973. |
[15] |
C. Goh and K. L. Teo, MISER: A FORTRAN program for solving optimal control problems, Advances in Engineering Software, 10 (1988), 90-99.doi: 10.1016/0141-1195(88)90005-8. |
[16] |
C. Gourieroux and J. Janiak, Financial Econometrics, Princeton University Press, Princeton, 2001.doi: 10.7202/010560ar. |
[17] |
N. Hakansson, Optimal investment and consumption strategies under risk for a class of utility functions, Econometrica, 38 (1970), 587-607.doi: 10.2307/1912196. |
[18] |
G. Heal, Valuing the Future: Economic Theory and Sustainability, Columbia University Press, New York, 1998. |
[19] |
S. M. N. Islam and B. D. Craven, Computation of non-linear continuous capital growth models: Experiments with optimal control algorithms and computer programs, Economic Modelling: The International Journal of Theoretical and Applied Papers on Economic Modelling 18 (2001), 551-586. |
[20] |
S. M. N. Islam and B. D. Craven, Measuring Sustainable Growth, in Governance and Social Responsibility, J. Batten, (ed.), ELsevier-North-Holland, Amsterdam, 2002. |
[21] |
K. Judd, Numerical Methods in Economics, MIT Press, Cambridge, 1998. |
[22] |
D. Leonard D. and N. V. Long, Optimal Control Theory and Static Optimization in Economics, Cambridge University Press, Cambridge, U.K, 1992. |
[23] |
R. Lucas, Asset prices in an exchange economy, Econometrica, 46 (1978), 1429-1445.doi: 10.2307/1913837. |
[24] |
A. Malliaris and W. Brock, Stochastic Methods in Economics and Finance, Elsevier Science, Amsterdam, 1982. |
[25] |
T. Mitra, Sensitivity of optimal programmes with respect to changes in target stocks: The case of irreversible investment, Journal of Economic Theory, 29 (1983), 172-184.doi: 10.1016/0022-0531(83)90128-X. |
[26] |
T. Mitra and D. Ray, Dynamic optimization on a non-convex feasible set: Some general resulots for non-emooth technologies, Zeitchrift für National Ökonomie, 44 (1984), 151-175.doi: 10.1007/BF01289475. |
[27] |
M. Ramon and A. Scott, (Ed.), Computational Methods for the Study of Dynamic Economies, Oxford University Press, Oxford, 1999. |
[28] |
A. L. Schwartz, Theory and implementation of numerical methods based on Runge-Kutta integration for solving optimal control problems, Dissertation, University of California at Berkeley, 1989. |
[29] |
J. K. Sengupta and P. Fanchon, Control Theory Methods in Economics, Kluwer Academic, Boston, 1997.doi: 10.1007/978-1-4615-6285-6. |
[30] |
C. Tapiero, Applied Stochastic Models and Control for Insurance and Finance, Kluwer Academic, London, 1998.doi: 10.1007/978-1-4615-5823-1. |
[31] |
K. L. Teo, C. Goh and K. Wong, A Unified Computational Approach for Optimal Control Problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, 55. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991. |
[32] |
G. Thompson and S. Thore, Computational Economics: Economic Modeling with Optimization Software, (Chapters 21 to 22 and Appendices A&B), Scientific Press, 1993. |
[33] |
R. Vickson and W. Ziemba, Stochastic Optimisation Models in Finance, Academic Press, New York, 1975. |
[34] |
S. Zenios, (Ed.), Financial Optimization, Cambridge University Press, Cambridge, 1993. |