• Previous Article
    The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times
  • JIMO Home
  • This Issue
  • Next Article
    Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy
January  2014, 10(1): 113-129. doi: 10.3934/jimo.2014.10.113

Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing

1. 

Graduate School of Informatics, Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

3. 

Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192

Received  September 2012 Revised  June 2013 Published  October 2013

In cloud computing, a large-scale parallel-distributed processing service is provided where a huge task is split into a number of subtasks and those subtasks are processed on a cluster of machines called workers. In such a processing service, a worker which takes a long time for processing a subtask makes the response time long (the issue of stragglers). One of efficient methods to alleviate this issue is to execute the same subtask by another worker in preparation for the slow worker (backup tasks). In this paper, we consider the efficiency of backup tasks. We model the task-scheduling server as a single-server queue, in which the server consists of a number of workers. When a task enters the server, the task is split into subtasks, and each subtask is served by its own worker and an alternative distinct worker. In this processing, we explicitly derive task processing time distributions for the two cases that the subtask processing time of a worker obeys Weibull or Pareto distribution. We compare the mean response time and the total processing time under backup-task scheduling with those under normal scheduling. Numerical examples show that the efficiency of backup-task scheduling significantly depends on workers' processing time distribution.
Citation: Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing. Journal of Industrial & Management Optimization, 2014, 10 (1) : 113-129. doi: 10.3934/jimo.2014.10.113
References:
[1]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, A view of cloud computing,, Communications of the ACM, 53 (2010), 50. doi: 10.1145/1721654.1721672. Google Scholar

[2]

L. A. Barroso and U. Hölzle, "The Datacenter as A Computer: An Introduction to the Design of Warehouse-Scale Machines,", Morgan & Claypool, (2009). doi: 10.2200/S00193ED1V01Y200905CAC006. Google Scholar

[3]

W. Cirne, D. Paranhos, F. Brasileiro and L. F. W. Góes, On the efficacy, efficiency and emergent behavior of task replication in large distributed systems,, Parallel Computing, 33 (2007), 213. doi: 10.1016/j.parco.2007.01.002. Google Scholar

[4]

J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters,, Communications of the ACM, 51 (2008), 107. doi: 10.1145/1327452.1327492. Google Scholar

[5]

J. Dejun, G. Pierre and C.-H. Chi, EC2 performance analysis for resource provisioning of service-oriented applications,, Proc. Service-Oriented Computing: ICSOC/ServiceWave 2009 Workshops, 6275 (2010), 197. doi: 10.1007/978-3-642-16132-2_19. Google Scholar

[6]

M. Dobber, R. V. D. Mei and G. Koole, Dynamic load balancing and job replication in a global-scale grid environment: A comparison,, IEEE Transactions on Parallel and Distributed Systems, 20 (2009), 207. doi: 10.1109/TPDS.2008.61. Google Scholar

[7]

D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, "Fundamentals of Queueing Theory,", $4^{th}$ edition, (2008). doi: 10.1002/9781118625651. Google Scholar

[8]

K. Xiong and H. Perros, Service performance and analysis in cloud computing,, Proc. 2009 IEEE Congress on Services Services - I, (2009), 693. doi: 10.1109/SERVICES-I.2009.121. Google Scholar

[9]

N. Yigitbasi, A. Iosup, D. Epema and S. Ostermann, C-Meter: A framework for performance analysis of computing clouds,, Proc. 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, (2009), 472. doi: 10.1109/CCGRID.2009.40. Google Scholar

show all references

References:
[1]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, A view of cloud computing,, Communications of the ACM, 53 (2010), 50. doi: 10.1145/1721654.1721672. Google Scholar

[2]

L. A. Barroso and U. Hölzle, "The Datacenter as A Computer: An Introduction to the Design of Warehouse-Scale Machines,", Morgan & Claypool, (2009). doi: 10.2200/S00193ED1V01Y200905CAC006. Google Scholar

[3]

W. Cirne, D. Paranhos, F. Brasileiro and L. F. W. Góes, On the efficacy, efficiency and emergent behavior of task replication in large distributed systems,, Parallel Computing, 33 (2007), 213. doi: 10.1016/j.parco.2007.01.002. Google Scholar

[4]

J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters,, Communications of the ACM, 51 (2008), 107. doi: 10.1145/1327452.1327492. Google Scholar

[5]

J. Dejun, G. Pierre and C.-H. Chi, EC2 performance analysis for resource provisioning of service-oriented applications,, Proc. Service-Oriented Computing: ICSOC/ServiceWave 2009 Workshops, 6275 (2010), 197. doi: 10.1007/978-3-642-16132-2_19. Google Scholar

[6]

M. Dobber, R. V. D. Mei and G. Koole, Dynamic load balancing and job replication in a global-scale grid environment: A comparison,, IEEE Transactions on Parallel and Distributed Systems, 20 (2009), 207. doi: 10.1109/TPDS.2008.61. Google Scholar

[7]

D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, "Fundamentals of Queueing Theory,", $4^{th}$ edition, (2008). doi: 10.1002/9781118625651. Google Scholar

[8]

K. Xiong and H. Perros, Service performance and analysis in cloud computing,, Proc. 2009 IEEE Congress on Services Services - I, (2009), 693. doi: 10.1109/SERVICES-I.2009.121. Google Scholar

[9]

N. Yigitbasi, A. Iosup, D. Epema and S. Ostermann, C-Meter: A framework for performance analysis of computing clouds,, Proc. 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, (2009), 472. doi: 10.1109/CCGRID.2009.40. Google Scholar

[1]

Kyosuke Hashimoto, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of backup-task scheduling with deadline time in cloud computing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 867-886. doi: 10.3934/jimo.2015.11.867

[2]

Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance optimization of parallel-distributed processing with checkpointing for cloud environment. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1423-1442. doi: 10.3934/jimo.2018014

[3]

Min-Fan He, Li-Ning Xing, Wen Li, Shang Xiang, Xu Tan. Double layer programming model to the scheduling of remote sensing data processing tasks. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1515-1526. doi: 10.3934/dcdss.2019104

[4]

Bin Zheng, Min Fan, Mengqi Liu, Shang-Chia Liu, Yunqiang Yin. Parallel-machine scheduling with potential disruption and positional-dependent processing times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 697-711. doi: 10.3934/jimo.2016041

[5]

Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial & Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269

[6]

Leiyang Wang, Zhaohui Liu. Heuristics for parallel machine scheduling with batch delivery consideration. Journal of Industrial & Management Optimization, 2014, 10 (1) : 259-273. doi: 10.3934/jimo.2014.10.259

[7]

Weidong Bao, Haoran Ji, Xiaomin Zhu, Ji Wang, Wenhua Xiao, Jianhong Wu. ACO-based solution for computation offloading in mobile cloud computing. Big Data & Information Analytics, 2016, 1 (1) : 1-13. doi: 10.3934/bdia.2016.1.1

[8]

Jinsong Xu. Reversible hidden data access algorithm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1219-1232. doi: 10.3934/dcdss.2019084

[9]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019036

[10]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[11]

Hongtruong Pham, Xiwen Lu. The inverse parallel machine scheduling problem with minimum total completion time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 613-620. doi: 10.3934/jimo.2014.10.613

[12]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018157

[13]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[14]

Arminda Moreno-Díaz, Gabriel de Blasio, Moreno-Díaz Jr.. Distributed, layered and reliable computing nets to represent neuronal receptive fields. Mathematical Biosciences & Engineering, 2014, 11 (2) : 343-361. doi: 10.3934/mbe.2014.11.343

[15]

Sze-Bi Hsu, Christopher A. Klausmeier, Chiu-Ju Lin. Analysis of a model of two parallel food chains. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 337-359. doi: 10.3934/dcdsb.2009.12.337

[16]

Lotfi Tadj, Zhe George Zhang, Chakib Tadj. A queueing analysis of multi-purpose production facility's operations. Journal of Industrial & Management Optimization, 2011, 7 (1) : 19-30. doi: 10.3934/jimo.2011.7.19

[17]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[18]

Yoshiaki Kawase, Shoji Kasahara. Priority queueing analysis of transaction-confirmation time for Bitcoin. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018193

[19]

Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115

[20]

Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial & Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

[Back to Top]