• Previous Article
    The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times
  • JIMO Home
  • This Issue
  • Next Article
    Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy
January  2014, 10(1): 113-129. doi: 10.3934/jimo.2014.10.113

Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing

1. 

Graduate School of Informatics, Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

3. 

Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192

Received  September 2012 Revised  June 2013 Published  October 2013

In cloud computing, a large-scale parallel-distributed processing service is provided where a huge task is split into a number of subtasks and those subtasks are processed on a cluster of machines called workers. In such a processing service, a worker which takes a long time for processing a subtask makes the response time long (the issue of stragglers). One of efficient methods to alleviate this issue is to execute the same subtask by another worker in preparation for the slow worker (backup tasks). In this paper, we consider the efficiency of backup tasks. We model the task-scheduling server as a single-server queue, in which the server consists of a number of workers. When a task enters the server, the task is split into subtasks, and each subtask is served by its own worker and an alternative distinct worker. In this processing, we explicitly derive task processing time distributions for the two cases that the subtask processing time of a worker obeys Weibull or Pareto distribution. We compare the mean response time and the total processing time under backup-task scheduling with those under normal scheduling. Numerical examples show that the efficiency of backup-task scheduling significantly depends on workers' processing time distribution.
Citation: Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing. Journal of Industrial & Management Optimization, 2014, 10 (1) : 113-129. doi: 10.3934/jimo.2014.10.113
References:
[1]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, A view of cloud computing,, Communications of the ACM, 53 (2010), 50.  doi: 10.1145/1721654.1721672.  Google Scholar

[2]

L. A. Barroso and U. Hölzle, "The Datacenter as A Computer: An Introduction to the Design of Warehouse-Scale Machines,", Morgan & Claypool, (2009).  doi: 10.2200/S00193ED1V01Y200905CAC006.  Google Scholar

[3]

W. Cirne, D. Paranhos, F. Brasileiro and L. F. W. Góes, On the efficacy, efficiency and emergent behavior of task replication in large distributed systems,, Parallel Computing, 33 (2007), 213.  doi: 10.1016/j.parco.2007.01.002.  Google Scholar

[4]

J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters,, Communications of the ACM, 51 (2008), 107.  doi: 10.1145/1327452.1327492.  Google Scholar

[5]

J. Dejun, G. Pierre and C.-H. Chi, EC2 performance analysis for resource provisioning of service-oriented applications,, Proc. Service-Oriented Computing: ICSOC/ServiceWave 2009 Workshops, 6275 (2010), 197.  doi: 10.1007/978-3-642-16132-2_19.  Google Scholar

[6]

M. Dobber, R. V. D. Mei and G. Koole, Dynamic load balancing and job replication in a global-scale grid environment: A comparison,, IEEE Transactions on Parallel and Distributed Systems, 20 (2009), 207.  doi: 10.1109/TPDS.2008.61.  Google Scholar

[7]

D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, "Fundamentals of Queueing Theory,", $4^{th}$ edition, (2008).  doi: 10.1002/9781118625651.  Google Scholar

[8]

K. Xiong and H. Perros, Service performance and analysis in cloud computing,, Proc. 2009 IEEE Congress on Services Services - I, (2009), 693.  doi: 10.1109/SERVICES-I.2009.121.  Google Scholar

[9]

N. Yigitbasi, A. Iosup, D. Epema and S. Ostermann, C-Meter: A framework for performance analysis of computing clouds,, Proc. 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, (2009), 472.  doi: 10.1109/CCGRID.2009.40.  Google Scholar

show all references

References:
[1]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, A view of cloud computing,, Communications of the ACM, 53 (2010), 50.  doi: 10.1145/1721654.1721672.  Google Scholar

[2]

L. A. Barroso and U. Hölzle, "The Datacenter as A Computer: An Introduction to the Design of Warehouse-Scale Machines,", Morgan & Claypool, (2009).  doi: 10.2200/S00193ED1V01Y200905CAC006.  Google Scholar

[3]

W. Cirne, D. Paranhos, F. Brasileiro and L. F. W. Góes, On the efficacy, efficiency and emergent behavior of task replication in large distributed systems,, Parallel Computing, 33 (2007), 213.  doi: 10.1016/j.parco.2007.01.002.  Google Scholar

[4]

J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters,, Communications of the ACM, 51 (2008), 107.  doi: 10.1145/1327452.1327492.  Google Scholar

[5]

J. Dejun, G. Pierre and C.-H. Chi, EC2 performance analysis for resource provisioning of service-oriented applications,, Proc. Service-Oriented Computing: ICSOC/ServiceWave 2009 Workshops, 6275 (2010), 197.  doi: 10.1007/978-3-642-16132-2_19.  Google Scholar

[6]

M. Dobber, R. V. D. Mei and G. Koole, Dynamic load balancing and job replication in a global-scale grid environment: A comparison,, IEEE Transactions on Parallel and Distributed Systems, 20 (2009), 207.  doi: 10.1109/TPDS.2008.61.  Google Scholar

[7]

D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, "Fundamentals of Queueing Theory,", $4^{th}$ edition, (2008).  doi: 10.1002/9781118625651.  Google Scholar

[8]

K. Xiong and H. Perros, Service performance and analysis in cloud computing,, Proc. 2009 IEEE Congress on Services Services - I, (2009), 693.  doi: 10.1109/SERVICES-I.2009.121.  Google Scholar

[9]

N. Yigitbasi, A. Iosup, D. Epema and S. Ostermann, C-Meter: A framework for performance analysis of computing clouds,, Proc. 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, (2009), 472.  doi: 10.1109/CCGRID.2009.40.  Google Scholar

[1]

Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020174

[2]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[3]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[4]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[5]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[6]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[7]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[8]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[9]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[10]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[13]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[14]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[15]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[16]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[17]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[18]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[19]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (6)

[Back to Top]