October  2014, 10(4): 1169-1189. doi: 10.3934/jimo.2014.10.1169

Information sharing in a make-to-stock supply chain

1. 

Department of Logistics Management, School of Economics and Management, Beijing Jiaotong University, Beijing, 100044

2. 

Department of Management Science and Engineering, School of Economics and Management, Tsinghua University, Beijing, 100084, China

Received  February 2013 Revised  September 2013 Published  February 2014

This paper addresses how different coordination mechanisms affect the information sharing behavior in a supply chain. We study information sharing in a make-to-stock supply chain under wholesale contract and revenue sharing contract. Under wholesale contract, we show that information sharing is always beneficial to the supplier and identify the conditions ensuring that information sharing is beneficial to the retailer. Under revenue sharing contract, information sharing is beneficial to the supplier, the retailer and the supply chain. This research indicates that whether sharing the demand information is beneficial depends on the coordination mechanism and parameters.
Citation: Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169
References:
[1]

Management Science, 55 (2009), 438-452. Google Scholar

[2]

Working Paper, (1998), Washington University in St. Louis, St. Louis. Google Scholar

[3]

Management Science, 53 (2007), 777-794. doi: 10.1287/mnsc.1060.0654.  Google Scholar

[4]

The MIT Press, Cambridge, Massachusetts, London, England, 2005. Google Scholar

[5]

Management Science, 46 (2000), 1032-1048. doi: 10.1287/mnsc.46.8.1032.12029.  Google Scholar

[6]

Management Science, 5 (2005), 30-44. doi: 10.1287/mnsc.1040.0215.  Google Scholar

[7]

Management Science, 46 (2000), 217-232. doi: 10.1287/mnsc.46.2.217.11923.  Google Scholar

[8]

in Handbooks in Operation and Managements Science: Supply Chain Management (eds. S. Graves and Ton de Kok), North - Holland, (2003). doi: 10.1016/S0927-0507(03)11007-9.  Google Scholar

[9]

Management Science, 55 (2009), 781-797. doi: 10.1287/mnsc.1080.0983.  Google Scholar

[10]

International Journal of Production Research, 49 (2011), 7469-7491. doi: 10.1080/00207543.2010.535037.  Google Scholar

[11]

Working paper, Department of Industrial Engineering and Management Sciences,Northwestern University, Evanston, IL., (2011). doi: 10.1111/j.1937-5956.2011.01284.x.  Google Scholar

[12]

Manufacture and Service Operations Management, 1 (1999), 50-61. doi: 10.1287/msom.1.1.50.  Google Scholar

[13]

Management Science, 54 (2008), 701-715. doi: 10.1287/mnsc.1070.0795.  Google Scholar

[14]

Management Science, 57 (2010), 566-581. doi: 10.1287/mnsc.1100.1295.  Google Scholar

[15]

Computers and Industrial Engineering, 59 (2010), 552-560. Google Scholar

[16]

8th edition, McGraw-Hill, Irwin Companies, 2012 . Google Scholar

[17]

Management Science, 46 (2000), 626-643. doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[18]

Management Science, 48 (2002), 1196-1212. doi: 10.1287/mnsc.48.9.1196.177.  Google Scholar

[19]

in Supply Chain Structure: Coordination, Information, and optimization, (eds. J. S. Song and D. D. Yao),Kluwer Publisher, Amsterdam, 2002, 169-214. doi: 10.1007/978-1-4757-6635-6_6.  Google Scholar

[20]

Management Science, 54 (2008), 1467-1481. doi: 10.1287/mnsc.1070.0851.  Google Scholar

[21]

Production and Operations Management, 18 (2009), 152-166. doi: 10.1111/j.1937-5956.2009.01013.x.  Google Scholar

[22]

Management Science, 50 (2000), 445-457. doi: 10.1287/mnsc.1030.0174.  Google Scholar

[23]

Management Science, 57 (2011), 1111-1137. Google Scholar

[24]

Operations Research, 47 (1999), 183-194. doi: 10.1287/opre.47.2.183.  Google Scholar

[25]

Decision Sciences, 33 (2002), 505-536. doi: 10.1111/j.1540-5915.2002.tb01654.x.  Google Scholar

[26]

Journal of Operations Management, 23 (2005), 579-598. doi: 10.1016/j.jom.2004.08.007.  Google Scholar

[27]

Transportation Research Part E- Logistics and Transportation Review, 44 (2008), 361-378. doi: 10.1016/j.tre.2006.12.001.  Google Scholar

[28]

Production and Operations Management, 11 (2002), 531-546. doi: 10.1111/j.1937-5956.2002.tb00476.x.  Google Scholar

[29]

International Journal of Production Economics, 109 (2007), 241-253. doi: 10.1016/j.ijpe.2006.12.051.  Google Scholar

show all references

References:
[1]

Management Science, 55 (2009), 438-452. Google Scholar

[2]

Working Paper, (1998), Washington University in St. Louis, St. Louis. Google Scholar

[3]

Management Science, 53 (2007), 777-794. doi: 10.1287/mnsc.1060.0654.  Google Scholar

[4]

The MIT Press, Cambridge, Massachusetts, London, England, 2005. Google Scholar

[5]

Management Science, 46 (2000), 1032-1048. doi: 10.1287/mnsc.46.8.1032.12029.  Google Scholar

[6]

Management Science, 5 (2005), 30-44. doi: 10.1287/mnsc.1040.0215.  Google Scholar

[7]

Management Science, 46 (2000), 217-232. doi: 10.1287/mnsc.46.2.217.11923.  Google Scholar

[8]

in Handbooks in Operation and Managements Science: Supply Chain Management (eds. S. Graves and Ton de Kok), North - Holland, (2003). doi: 10.1016/S0927-0507(03)11007-9.  Google Scholar

[9]

Management Science, 55 (2009), 781-797. doi: 10.1287/mnsc.1080.0983.  Google Scholar

[10]

International Journal of Production Research, 49 (2011), 7469-7491. doi: 10.1080/00207543.2010.535037.  Google Scholar

[11]

Working paper, Department of Industrial Engineering and Management Sciences,Northwestern University, Evanston, IL., (2011). doi: 10.1111/j.1937-5956.2011.01284.x.  Google Scholar

[12]

Manufacture and Service Operations Management, 1 (1999), 50-61. doi: 10.1287/msom.1.1.50.  Google Scholar

[13]

Management Science, 54 (2008), 701-715. doi: 10.1287/mnsc.1070.0795.  Google Scholar

[14]

Management Science, 57 (2010), 566-581. doi: 10.1287/mnsc.1100.1295.  Google Scholar

[15]

Computers and Industrial Engineering, 59 (2010), 552-560. Google Scholar

[16]

8th edition, McGraw-Hill, Irwin Companies, 2012 . Google Scholar

[17]

Management Science, 46 (2000), 626-643. doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[18]

Management Science, 48 (2002), 1196-1212. doi: 10.1287/mnsc.48.9.1196.177.  Google Scholar

[19]

in Supply Chain Structure: Coordination, Information, and optimization, (eds. J. S. Song and D. D. Yao),Kluwer Publisher, Amsterdam, 2002, 169-214. doi: 10.1007/978-1-4757-6635-6_6.  Google Scholar

[20]

Management Science, 54 (2008), 1467-1481. doi: 10.1287/mnsc.1070.0851.  Google Scholar

[21]

Production and Operations Management, 18 (2009), 152-166. doi: 10.1111/j.1937-5956.2009.01013.x.  Google Scholar

[22]

Management Science, 50 (2000), 445-457. doi: 10.1287/mnsc.1030.0174.  Google Scholar

[23]

Management Science, 57 (2011), 1111-1137. Google Scholar

[24]

Operations Research, 47 (1999), 183-194. doi: 10.1287/opre.47.2.183.  Google Scholar

[25]

Decision Sciences, 33 (2002), 505-536. doi: 10.1111/j.1540-5915.2002.tb01654.x.  Google Scholar

[26]

Journal of Operations Management, 23 (2005), 579-598. doi: 10.1016/j.jom.2004.08.007.  Google Scholar

[27]

Transportation Research Part E- Logistics and Transportation Review, 44 (2008), 361-378. doi: 10.1016/j.tre.2006.12.001.  Google Scholar

[28]

Production and Operations Management, 11 (2002), 531-546. doi: 10.1111/j.1937-5956.2002.tb00476.x.  Google Scholar

[29]

International Journal of Production Economics, 109 (2007), 241-253. doi: 10.1016/j.ijpe.2006.12.051.  Google Scholar

[1]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[2]

Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial & Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31

[3]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[4]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[5]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[6]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[7]

Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088

[8]

Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial & Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513

[9]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial & Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[10]

Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial & Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263

[11]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[12]

Jun Wu, Shouyang Wang, Wuyi Yue. Supply contract model with service level constraint. Journal of Industrial & Management Optimization, 2005, 1 (3) : 275-287. doi: 10.3934/jimo.2005.1.275

[13]

Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial & Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31

[14]

Wucheng Zi, Jiayu Zhou, Honglei Xu, Guodong Li, Gang Lin. Preserving relational contract stability of fresh agricultural product supply chains. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020079

[15]

Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial & Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507

[16]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[17]

Bagher Bagherpour, Shahrooz Janbaz, Ali Zaghian. Optimal information ratio of secret sharing schemes on Dutch windmill graphs. Advances in Mathematics of Communications, 2019, 13 (1) : 89-99. doi: 10.3934/amc.2019005

[18]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[19]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1999-2027. doi: 10.3934/jimo.2019040

[20]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]