October  2014, 10(4): 1191-1208. doi: 10.3934/jimo.2014.10.1191

On the multi-server machine interference with modified Bernoulli vacation

1. 

Department of Applied Statistics, National Taichung University of Science and Technology, Taichung, 404, Taiwan, Taiwan

Received  April 2013 Revised  November 2013 Published  February 2014

We study the multi-server machine interference problem with repair pressure coefficient and a modified Bernoulli vacation. The repair rate depends on the number of failed machines waiting in the system. In congestion, the server may increase the repair rate with pressure coefficient $\theta$ to reduce the queue length. At each repair completion of a server, the server may go for a vacation of random length with probability $p$ or may continue to repair the next failed machine, if any, with probability $1-p$. The entire system is modeled as a finite-state Markov chain and its steady state distribution is obtained by a recursive matrix approach. The major performance measures are evaluated based on this distribution. Under a cost structure, we propose to use the Quasi-Newton method and probabilistic global search Lausanne method to search for the global optimal system parameters. Numerical examples are presented to demonstrate the application of our approach.
Citation: Tzu-Hsin Liu, Jau-Chuan Ke. On the multi-server machine interference with modified Bernoulli vacation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1191-1208. doi: 10.3934/jimo.2014.10.1191
References:
[1]

F. Benson and D. R. Cox, The productivity of machine requiring attention at random intervals,, Journal of the Royal Statistical Society B, 13 (1951), 65.   Google Scholar

[2]

E. K. P. Chong and S. H. Zak, An Introduction of Optimization,, 2nd edition, (2001).  doi: 10.1002/9781118033340.  Google Scholar

[3]

G. Choudhury, A two-stage batch arrival queueing system with a modified Bernoulli schedule vacation under N-policy,, Mathematical and Computer Modeling, 42 (2005), 71.  doi: 10.1016/j.mcm.2005.04.003.  Google Scholar

[4]

G. Choudhury and K. Deka, An $M^X/G/1$ unreliable retrial queue with two phases of service and Bernoulli admission mechanism,, Applied Mathematics and Comutation, 215 (2009), 936.  doi: 10.1016/j.amc.2009.06.015.  Google Scholar

[5]

G. Choudhury and K. C. Madan, A two phase batch arrival queueing system with a vacation time under Bernoulli schedule,, Applied Mathematics and Computation, 149 (2004), 337.  doi: 10.1016/S0096-3003(03)00138-3.  Google Scholar

[6]

G. Choudhury and L. Tadj, The optimal control of an $M^X/G/1$ unreliable server queue with two phases of service and Bernoulli vacation schedule,, Mathematical and Computer Modelling, 54 (2011), 673.  doi: 10.1016/j.mcm.2011.03.010.  Google Scholar

[7]

B. T. Doshi, Queueing systems with vacations - a survey,, Queueing Systems, 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[8]

S. M. Gupta, Machine interference problem with warm spares, server vacations and exhaustive service,, Performance Evaluation, 29 (1997), 195.  doi: 10.1016/S0166-5316(96)00046-6.  Google Scholar

[9]

J. C. Ke, Vacation policies for machine interference problem with an unreliable server and state-dependent service rate,, Journal of the Chineses Institute of Industrial Engineers, 23 (2006), 100.   Google Scholar

[10]

J. C. Ke, S. L. Lee and C. H. Liou, Machine repair problem in production systems with spares and server vacations,, RAIRO-Operations Research, 43 (2009), 35.  doi: 10.1051/ro/2009004.  Google Scholar

[11]

J. C. Ke and C. H. Lin, A Markov repairable system involving an imperfect service station with multiple vacations,, Asia-Pacific Journal of Operational Research, 22 (2005), 555.  doi: 10.1142/S021759590500073X.  Google Scholar

[12]

J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares,, Applied Mathematical Modelling, 31 (2007), 880.  doi: 10.1016/j.apm.2006.02.009.  Google Scholar

[13]

J. C. Ke, C. H. Wu and W. L. Pearn, Algorithmic analysis of the multi-server system with a modified Bernoulli vacation schedule,, Applied Mathematical Modelling, 35 (2011), 2196.  doi: 10.1016/j.apm.2010.11.019.  Google Scholar

[14]

J. C. Ke, C. H. Wu and Z. Zhang, Recent developments in vacation queueing models: A short survey,, International Journal of Operations Research, 7 (2010), 3.   Google Scholar

[15]

K. C. Madan, W. Abu-Dayyeh and F. Taiyyan, A two server queue with Bernoulli schedules and a single vacation policy,, Applied Mathematics and Computation, 145 (2003), 59.  doi: 10.1016/S0096-3003(02)00469-1.  Google Scholar

[16]

R. Oliva, Tradeoffs in responses to work pressure in the service industry,, California Management Review, 30 (2001), 26.  doi: 10.1109/EMR.2002.1022405.  Google Scholar

[17]

B. Raphael and I. F. C. Smith, A direct stochastic algorithm for global search,, Journal of Applied Mathematics and Computation, 146 (2003), 729.  doi: 10.1016/S0096-3003(02)00629-X.  Google Scholar

[18]

L. Tadj, G. Choudhury and C. Tadj, A quorum queueing system with a random setup time under N-policy and with Bernoulli vacation schedule,, Quality Technology and Quantitative Management, 3 (2006), 145.   Google Scholar

[19]

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, Vacation and Priority Systems. part I, vol. 1,, North-Holland, (1991).   Google Scholar

[20]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, Springer-Verlag, (2006).   Google Scholar

[21]

K. H. Wang, W. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method,, Journal of Computational and Applied Mathematics, 233 (2009), 449.  doi: 10.1016/j.cam.2009.07.043.  Google Scholar

show all references

References:
[1]

F. Benson and D. R. Cox, The productivity of machine requiring attention at random intervals,, Journal of the Royal Statistical Society B, 13 (1951), 65.   Google Scholar

[2]

E. K. P. Chong and S. H. Zak, An Introduction of Optimization,, 2nd edition, (2001).  doi: 10.1002/9781118033340.  Google Scholar

[3]

G. Choudhury, A two-stage batch arrival queueing system with a modified Bernoulli schedule vacation under N-policy,, Mathematical and Computer Modeling, 42 (2005), 71.  doi: 10.1016/j.mcm.2005.04.003.  Google Scholar

[4]

G. Choudhury and K. Deka, An $M^X/G/1$ unreliable retrial queue with two phases of service and Bernoulli admission mechanism,, Applied Mathematics and Comutation, 215 (2009), 936.  doi: 10.1016/j.amc.2009.06.015.  Google Scholar

[5]

G. Choudhury and K. C. Madan, A two phase batch arrival queueing system with a vacation time under Bernoulli schedule,, Applied Mathematics and Computation, 149 (2004), 337.  doi: 10.1016/S0096-3003(03)00138-3.  Google Scholar

[6]

G. Choudhury and L. Tadj, The optimal control of an $M^X/G/1$ unreliable server queue with two phases of service and Bernoulli vacation schedule,, Mathematical and Computer Modelling, 54 (2011), 673.  doi: 10.1016/j.mcm.2011.03.010.  Google Scholar

[7]

B. T. Doshi, Queueing systems with vacations - a survey,, Queueing Systems, 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[8]

S. M. Gupta, Machine interference problem with warm spares, server vacations and exhaustive service,, Performance Evaluation, 29 (1997), 195.  doi: 10.1016/S0166-5316(96)00046-6.  Google Scholar

[9]

J. C. Ke, Vacation policies for machine interference problem with an unreliable server and state-dependent service rate,, Journal of the Chineses Institute of Industrial Engineers, 23 (2006), 100.   Google Scholar

[10]

J. C. Ke, S. L. Lee and C. H. Liou, Machine repair problem in production systems with spares and server vacations,, RAIRO-Operations Research, 43 (2009), 35.  doi: 10.1051/ro/2009004.  Google Scholar

[11]

J. C. Ke and C. H. Lin, A Markov repairable system involving an imperfect service station with multiple vacations,, Asia-Pacific Journal of Operational Research, 22 (2005), 555.  doi: 10.1142/S021759590500073X.  Google Scholar

[12]

J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares,, Applied Mathematical Modelling, 31 (2007), 880.  doi: 10.1016/j.apm.2006.02.009.  Google Scholar

[13]

J. C. Ke, C. H. Wu and W. L. Pearn, Algorithmic analysis of the multi-server system with a modified Bernoulli vacation schedule,, Applied Mathematical Modelling, 35 (2011), 2196.  doi: 10.1016/j.apm.2010.11.019.  Google Scholar

[14]

J. C. Ke, C. H. Wu and Z. Zhang, Recent developments in vacation queueing models: A short survey,, International Journal of Operations Research, 7 (2010), 3.   Google Scholar

[15]

K. C. Madan, W. Abu-Dayyeh and F. Taiyyan, A two server queue with Bernoulli schedules and a single vacation policy,, Applied Mathematics and Computation, 145 (2003), 59.  doi: 10.1016/S0096-3003(02)00469-1.  Google Scholar

[16]

R. Oliva, Tradeoffs in responses to work pressure in the service industry,, California Management Review, 30 (2001), 26.  doi: 10.1109/EMR.2002.1022405.  Google Scholar

[17]

B. Raphael and I. F. C. Smith, A direct stochastic algorithm for global search,, Journal of Applied Mathematics and Computation, 146 (2003), 729.  doi: 10.1016/S0096-3003(02)00629-X.  Google Scholar

[18]

L. Tadj, G. Choudhury and C. Tadj, A quorum queueing system with a random setup time under N-policy and with Bernoulli vacation schedule,, Quality Technology and Quantitative Management, 3 (2006), 145.   Google Scholar

[19]

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, Vacation and Priority Systems. part I, vol. 1,, North-Holland, (1991).   Google Scholar

[20]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, Springer-Verlag, (2006).   Google Scholar

[21]

K. H. Wang, W. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method,, Journal of Computational and Applied Mathematics, 233 (2009), 449.  doi: 10.1016/j.cam.2009.07.043.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]