October  2014, 10(4): 1209-1224. doi: 10.3934/jimo.2014.10.1209

Hedging strategies for discretely monitored Asian options under Lévy processes

1. 

School of Mathematical Sciences, Nankai University, Tianjin 300071

2. 

School of Business, Nankai University, Tianjin 300071

Received  May 2013 Revised  December 2013 Published  February 2014

In this work, we consider a variance-optimal hedging strategy for discretely sampled geometric Asian options, under exponential Lévy dynamics. Since it is difficult to hedge these instruments perfectly, here we choose to maximize a quadratic utility function and give the expressions of hedging strategies explicitly, based on the derived Föllmer-Schweizer decomposition of the contingent claim of geometric Asian options monitored at discrete times. The expression of its corresponding error is also given.
Citation: Xingchun Wang, Yongjin Wang. Hedging strategies for discretely monitored Asian options under Lévy processes. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1209-1224. doi: 10.3934/jimo.2014.10.1209
References:
[1]

J. Angus, A note on pricing Asian derivatives with continuous geometric averaging,, Journal of Futures Markets, 19 (1999), 845.  doi: 10.1002/(SICI)1096-9934(199910)19:7<845::AID-FUT6>3.3.CO;2-4.  Google Scholar

[2]

E. Bayraktar and H. Xing, Pricing Asian options for jump diffusion,, Mathematical Finance, 21 (2011), 117.  doi: 10.1111/j.1467-9965.2010.00426.x.  Google Scholar

[3]

N. Cai and S. G. Kou, Pricing Asian options under a hyper-exponential jump diffusion model,, Operations Research, 60 (2012), 64.  doi: 10.1287/opre.1110.1006.  Google Scholar

[4]

R. Engle, Risk and Volatility: Econometric models and financial practice,, American Economic Review, 94 (2004), 405.  doi: 10.1257/0002828041464597.  Google Scholar

[5]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in Applied Stochastic Analysis (eds. M. Davis and R. Elliott), (1991), 389.   Google Scholar

[6]

P. Foschi, S. Pagliarani and A. Pascucci, Approximations for Asian options in local volatility models,, Journal of Computational and Applied Mathematics, 237 (2013), 442.  doi: 10.1016/j.cam.2012.06.015.  Google Scholar

[7]

G. Fusai and A. Meucci, Pricing discretely monitored Asian options under Lévy processes,, Journal of Banking and Finance, 32 (2008), 2076.  doi: 10.1016/j.jbankfin.2007.12.027.  Google Scholar

[8]

S. Hodges and A. Neuberger, Optimal replication of contingent claims under transactions costs,, Review of Forward Markets, 8 (1989), 222.   Google Scholar

[9]

F. Hubalek, J. Kallsen and L. Karwczyk, Variance-optimal hedging for processes with stationary independent increments,, Annals of Applied Probability, 16 (2006), 853.  doi: 10.1214/105051606000000178.  Google Scholar

[10]

F. Hubalek and C. Sgarra, On the explicit evaluation of the geometric Asian options in stochastic volatility models with jumps,, Journal of Computational and Applied Mathematics, 235 (2011), 3355.  doi: 10.1016/j.cam.2011.01.049.  Google Scholar

[11]

B. Kim and I. S. Wee, Pricing of geometric Asian options under Heston's stochastic volatility model,, Quantitative Finance., ().  doi: 10.1080/14697688.2011.596844.  Google Scholar

[12]

D. Schweizer, Variance-optimal hedging in discrete time,, Mathematics of Operations Research, 20 (1995), 1.  doi: 10.1287/moor.20.1.1.  Google Scholar

[13]

X. Wang and Y. Wang, Variance-optimal hedging for target volatility options,, Journal of Industrial and Management Optimization, 10 (2014), 207.  doi: 10.3934/jimo.2014.10.207.  Google Scholar

show all references

References:
[1]

J. Angus, A note on pricing Asian derivatives with continuous geometric averaging,, Journal of Futures Markets, 19 (1999), 845.  doi: 10.1002/(SICI)1096-9934(199910)19:7<845::AID-FUT6>3.3.CO;2-4.  Google Scholar

[2]

E. Bayraktar and H. Xing, Pricing Asian options for jump diffusion,, Mathematical Finance, 21 (2011), 117.  doi: 10.1111/j.1467-9965.2010.00426.x.  Google Scholar

[3]

N. Cai and S. G. Kou, Pricing Asian options under a hyper-exponential jump diffusion model,, Operations Research, 60 (2012), 64.  doi: 10.1287/opre.1110.1006.  Google Scholar

[4]

R. Engle, Risk and Volatility: Econometric models and financial practice,, American Economic Review, 94 (2004), 405.  doi: 10.1257/0002828041464597.  Google Scholar

[5]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in Applied Stochastic Analysis (eds. M. Davis and R. Elliott), (1991), 389.   Google Scholar

[6]

P. Foschi, S. Pagliarani and A. Pascucci, Approximations for Asian options in local volatility models,, Journal of Computational and Applied Mathematics, 237 (2013), 442.  doi: 10.1016/j.cam.2012.06.015.  Google Scholar

[7]

G. Fusai and A. Meucci, Pricing discretely monitored Asian options under Lévy processes,, Journal of Banking and Finance, 32 (2008), 2076.  doi: 10.1016/j.jbankfin.2007.12.027.  Google Scholar

[8]

S. Hodges and A. Neuberger, Optimal replication of contingent claims under transactions costs,, Review of Forward Markets, 8 (1989), 222.   Google Scholar

[9]

F. Hubalek, J. Kallsen and L. Karwczyk, Variance-optimal hedging for processes with stationary independent increments,, Annals of Applied Probability, 16 (2006), 853.  doi: 10.1214/105051606000000178.  Google Scholar

[10]

F. Hubalek and C. Sgarra, On the explicit evaluation of the geometric Asian options in stochastic volatility models with jumps,, Journal of Computational and Applied Mathematics, 235 (2011), 3355.  doi: 10.1016/j.cam.2011.01.049.  Google Scholar

[11]

B. Kim and I. S. Wee, Pricing of geometric Asian options under Heston's stochastic volatility model,, Quantitative Finance., ().  doi: 10.1080/14697688.2011.596844.  Google Scholar

[12]

D. Schweizer, Variance-optimal hedging in discrete time,, Mathematics of Operations Research, 20 (1995), 1.  doi: 10.1287/moor.20.1.1.  Google Scholar

[13]

X. Wang and Y. Wang, Variance-optimal hedging for target volatility options,, Journal of Industrial and Management Optimization, 10 (2014), 207.  doi: 10.3934/jimo.2014.10.207.  Google Scholar

[1]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[2]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[3]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[6]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[7]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[8]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[9]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[12]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[13]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[14]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[15]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[16]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[17]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[18]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[19]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[20]

Editorial Office. Retraction: Wei Gao and Juan L. G. Guirao, Preface. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : ⅰ-ⅰ. doi: 10.3934/dcdss.201904i

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]