• Previous Article
    Optimal pricing policy for deteriorating items with preservation technology investment
  • JIMO Home
  • This Issue
  • Next Article
    Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem
October  2014, 10(4): 1235-1259. doi: 10.3934/jimo.2014.10.1235

Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model

1. 

School of Finance, The Center of Cooperative Innovation for Modern Service Industry, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

School of Finance and Statistics, Research Center of International Finance and Risk Management, East China Normal University, Shanghai 200241, China

3. 

School of Mathematics and Computer Sciences, Anhui Normal University, Wuhu, Anhui, 241003

Received  April 2013 Revised  October 2013 Published  February 2014

In the framework of dual risk model, Yao et al. [18](Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs. European Journal of Operational Research, 211, 568-576) show how to determine optimal dividend and capital injection strategy when the dividend rate is unrestricted and the bankruptcy is forbidden. In this paper, we further include constrain on dividend rate and allow for bankruptcy when it is in deficit. We seek the optimal strategy for maximizing the expected discounted dividends minus the discounted capital injections before bankruptcy. Explicit solutions for strategy and value function are obtained when income jumps follow a hyper-exponential distribution, the corresponding limit results are presented, some known results are extended.
Citation: Dingjun Yao, Rongming Wang, Lin Xu. Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1235-1259. doi: 10.3934/jimo.2014.10.1235
References:
[1]

H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance,, RACSAM Rev. R. Acad. Cien. Serie A. Mat., 103 (2009), 295.  doi: 10.1007/BF03191909.  Google Scholar

[2]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out,, Insurance: Mathematics and Economics, 20 (1997), 1.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[3]

B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion,, ASTIN Bulletin, 41 (2011), 611.  doi: 10.2139/ssrn.1709174.  Google Scholar

[4]

F. Avram, Z. Palmowski and M. R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process,, The Annals of Applied Probability, 17 (2007), 156.  doi: 10.1214/105051606000000709.  Google Scholar

[5]

L. Bai and J. Guo, Optimal dividend payments in the classical risk model when payments are subject to both transaction costs and taxes,, Scandinavian Actuarial Journal, 2010 (2010), 36.  doi: 10.1080/03461230802591098.  Google Scholar

[6]

A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm,, Mathematical Finance, 16 (2006), 181.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[7]

H. Dai, Z. Liu, and N. Luan, Optimal dividend strategies in a dual model with capital injections,, Mathematical Methods of Operations Research, 72 (2010), 129.  doi: 10.1007/s00186-010-0312-7.  Google Scholar

[8]

A. Feldmann and W. Whitt, Fitting mixtures of exponentials to long-tail distributions to analyze network performance models,, Performance Evaluation, 31 (1998), 245.  doi: 10.1016/S0166-5316(97)00003-5.  Google Scholar

[9]

N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections,, Insurance: Mathmatics and Economics, 43 (2008), 270.  doi: 10.1016/j.insmatheco.2008.05.013.  Google Scholar

[10]

A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs,, Insurance: Mathematics and Economics, 42 (2008), 954.  doi: 10.1016/j.insmatheco.2007.10.013.  Google Scholar

[11]

A. C. Y. Ng, On a dual model with a dividend threshold,, Insurance: Mathematics and Economics, 44 (2009), 315.  doi: 10.1016/j.insmatheco.2008.11.011.  Google Scholar

[12]

J. Paulsen, Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs,, SIAM Journal on Control and Optimization, 47 (2008), 2201.  doi: 10.1137/070691632.  Google Scholar

[13]

X. Peng, M. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs,, Insurance: Mathematics and Economics, 51 (2012), 576.  doi: 10.1016/j.insmatheco.2012.08.004.  Google Scholar

[14]

S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns,, Mathematical Finance, 12 (2002), 155.  doi: 10.1111/1467-9965.t01-2-02002.  Google Scholar

[15]

N. Scheer and H. Schmidli, Optimal dividend strategies in a cramér-lundberg model with capital injections and administration costs,, European Actuarial Journal, 1 (2011), 57.  doi: 10.1007/s13385-011-0007-3.  Google Scholar

[16]

S. Thonhauser and H. Albrecher, Dividend maximization under consideration of the time value of ruin,, Insurance: Mathematics and Economics, 44 (2007), 163.  doi: 10.1016/j.insmatheco.2006.10.013.  Google Scholar

[17]

D. Yao, H. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.  doi: 10.3934/jimo.2010.6.761.  Google Scholar

[18]

D. Yao, H. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs,, European Journal of Operational Research, 211 (2011), 568.  doi: 10.1016/j.ejor.2011.01.015.  Google Scholar

show all references

References:
[1]

H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance,, RACSAM Rev. R. Acad. Cien. Serie A. Mat., 103 (2009), 295.  doi: 10.1007/BF03191909.  Google Scholar

[2]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out,, Insurance: Mathematics and Economics, 20 (1997), 1.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[3]

B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion,, ASTIN Bulletin, 41 (2011), 611.  doi: 10.2139/ssrn.1709174.  Google Scholar

[4]

F. Avram, Z. Palmowski and M. R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process,, The Annals of Applied Probability, 17 (2007), 156.  doi: 10.1214/105051606000000709.  Google Scholar

[5]

L. Bai and J. Guo, Optimal dividend payments in the classical risk model when payments are subject to both transaction costs and taxes,, Scandinavian Actuarial Journal, 2010 (2010), 36.  doi: 10.1080/03461230802591098.  Google Scholar

[6]

A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm,, Mathematical Finance, 16 (2006), 181.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[7]

H. Dai, Z. Liu, and N. Luan, Optimal dividend strategies in a dual model with capital injections,, Mathematical Methods of Operations Research, 72 (2010), 129.  doi: 10.1007/s00186-010-0312-7.  Google Scholar

[8]

A. Feldmann and W. Whitt, Fitting mixtures of exponentials to long-tail distributions to analyze network performance models,, Performance Evaluation, 31 (1998), 245.  doi: 10.1016/S0166-5316(97)00003-5.  Google Scholar

[9]

N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections,, Insurance: Mathmatics and Economics, 43 (2008), 270.  doi: 10.1016/j.insmatheco.2008.05.013.  Google Scholar

[10]

A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs,, Insurance: Mathematics and Economics, 42 (2008), 954.  doi: 10.1016/j.insmatheco.2007.10.013.  Google Scholar

[11]

A. C. Y. Ng, On a dual model with a dividend threshold,, Insurance: Mathematics and Economics, 44 (2009), 315.  doi: 10.1016/j.insmatheco.2008.11.011.  Google Scholar

[12]

J. Paulsen, Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs,, SIAM Journal on Control and Optimization, 47 (2008), 2201.  doi: 10.1137/070691632.  Google Scholar

[13]

X. Peng, M. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs,, Insurance: Mathematics and Economics, 51 (2012), 576.  doi: 10.1016/j.insmatheco.2012.08.004.  Google Scholar

[14]

S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns,, Mathematical Finance, 12 (2002), 155.  doi: 10.1111/1467-9965.t01-2-02002.  Google Scholar

[15]

N. Scheer and H. Schmidli, Optimal dividend strategies in a cramér-lundberg model with capital injections and administration costs,, European Actuarial Journal, 1 (2011), 57.  doi: 10.1007/s13385-011-0007-3.  Google Scholar

[16]

S. Thonhauser and H. Albrecher, Dividend maximization under consideration of the time value of ruin,, Insurance: Mathematics and Economics, 44 (2007), 163.  doi: 10.1016/j.insmatheco.2006.10.013.  Google Scholar

[17]

D. Yao, H. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.  doi: 10.3934/jimo.2010.6.761.  Google Scholar

[18]

D. Yao, H. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs,, European Journal of Operational Research, 211 (2011), 568.  doi: 10.1016/j.ejor.2011.01.015.  Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[11]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[12]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]