January  2014, 10(1): 131-149. doi: 10.3934/jimo.2014.10.131

The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times

1. 

SMACS Research Group, TELIN Department, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium, Belgium, Belgium

2. 

Supply Networks and Logistics Research Center, Department of Industrial Management, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium

Received  September 2012 Revised  June 2013 Published  October 2013

In this paper, we analyse the behaviour of a discrete-time single-server queueing system with general service times, equipped with the $NT$-policy. This is a threshold policy designed to reduce the number of service unit activation/deactivation cycles, whilst ensuring an acceptable delay trade-off. Once the server is deactivated, reactivation will be postponed until either $N$ customers have accumulated in the queue or the first customer has been in the queue for $T$ slots, whichever happens first. Due to this modus operandi, the system circulates between three phases: empty, accumulating and serving.
    We assume a Bernoulli arrival process of customers and independent and identically distributed service times. Using a probability generating functions approach, we obtain expressions for the steady-state distributions of the phase sojourn times, the cycle length, the system content and the customer delay. The influence of the threshold parameters $N$ and $T$ on the mean sojourn times and the expected delay is discussed by means of numerical examples.
Citation: Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times. Journal of Industrial & Management Optimization, 2014, 10 (1) : 131-149. doi: 10.3934/jimo.2014.10.131
References:
[1]

A. S. Alfa and W. Li, Optimal ($N$,$T$)-policy for M/G/1 system with cost structures,, Performance Evaluation, 42 (2000), 265. doi: 10.1016/S0166-5316(00)00015-8.

[2]

W. Böhm and S. G. Mohanty, On discrete-time Markovian $N$-policy queues involving batches,, Sankhya: The Indian Journal of Statistics, 56 (1994), 144.

[3]

O. J. Boxma and W. P. Groenendijk, Waiting times in discrete-time cyclic-service systems,, IEEE Transactions on Communications, 36 (1988), 164. doi: 10.1109/26.2746.

[4]

H. Bruneel and B. G. Kim, "Discrete-Time Models for Communication Systems Including ATM,", The Springer International Series In Engineering And Computer Science, 205 (1993). doi: 10.1007/978-1-4615-3130-2.

[5]

B. Feyaerts, S. De Vuyst, S. Wittevrongel and H. Bruneel, Analysis of a discrete-time queueing system with an $NT$-policy,, ASMTA '10: 17th International Conference on Analytical and Stochastic Modeling Techniques and Applications, 6148 (2010), 29. doi: 10.1007/978-3-642-13568-2_3.

[6]

P. Flajolet and R. Sedgewick, "Analytic Combinatorics,", Cambridge University Press, (2009). doi: 10.1017/CBO9780511801655.

[7]

A. G. Hernández-Díaz and P. Moreno, Analysis and optimal control of a discrete-time queueing system under the $(m,N)$-policy,, Valuetools '06: Proceedings of the 1st International Conference on Performance Evaluation Methodologies and Tools, (2006).

[8]

D. P. Heyman, The T-policy for the M/G/1 queue,, Management Science, 23 (1977), 775. doi: 10.1287/mnsc.23.7.775.

[9]

J.-C. Ke, Optimal $NT$ policies for M/G/1 system with a startup and unreliable server,, Computers & Industrial Engineering, 50 (2006), 248. doi: 10.1016/j.cie.2006.04.004.

[10]

J.-C. Ke, H.-I Huang and Y.-K. Chu, Batch arrival queue with $N$-policy and at most $J$ vacations,, Applied Mathematical Modelling, 34 (2010), 451. doi: 10.1016/j.apm.2009.06.003.

[11]

H. W. Lee and W. J. Seo, The performance of the M/G/1 queue under the dyadic Min($N,D$)-policy and its cost optimization,, Performance Evaluation, 65 (2008), 742.

[12]

S. S. Lee, H. W. Lee and K. C. Chae, Batch arrival queue with $N$-policy and single vacation,, Computers & Operations Research, 22 (1995), 173.

[13]

P. Moreno, A discrete-time single-server queue with a modified $N$-policy,, International Journal of Systems Science, 38 (2007), 483. doi: 10.1080/00207720701353405.

[14]

H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 3: Discrete-Time Systems,", North-Holland, (1993).

[15]

K.-H. Wang, T.-Y. Wang and W. L. Pearn, Optimal control of the $N$-policy M/G/1 queueing system with server breakdowns and general startup times,, Applied Mathematical Modelling, 31 (2007), 2199. doi: 10.1016/j.apm.2006.08.016.

[16]

T.-Y. Wang, K.-H. Wang and W. L. Pearn, Optimization of the $T$ policy M/G/1 queue with server breakdowns and general startup times,, Journal of Computational and Applied Mathematics, 228 (2009), 270. doi: 10.1016/j.cam.2008.09.021.

[17]

M. Yadin and P. Naor, Queueing systems with a removable service station,, Operational Research Quarterly, 14 (1963), 393.

show all references

References:
[1]

A. S. Alfa and W. Li, Optimal ($N$,$T$)-policy for M/G/1 system with cost structures,, Performance Evaluation, 42 (2000), 265. doi: 10.1016/S0166-5316(00)00015-8.

[2]

W. Böhm and S. G. Mohanty, On discrete-time Markovian $N$-policy queues involving batches,, Sankhya: The Indian Journal of Statistics, 56 (1994), 144.

[3]

O. J. Boxma and W. P. Groenendijk, Waiting times in discrete-time cyclic-service systems,, IEEE Transactions on Communications, 36 (1988), 164. doi: 10.1109/26.2746.

[4]

H. Bruneel and B. G. Kim, "Discrete-Time Models for Communication Systems Including ATM,", The Springer International Series In Engineering And Computer Science, 205 (1993). doi: 10.1007/978-1-4615-3130-2.

[5]

B. Feyaerts, S. De Vuyst, S. Wittevrongel and H. Bruneel, Analysis of a discrete-time queueing system with an $NT$-policy,, ASMTA '10: 17th International Conference on Analytical and Stochastic Modeling Techniques and Applications, 6148 (2010), 29. doi: 10.1007/978-3-642-13568-2_3.

[6]

P. Flajolet and R. Sedgewick, "Analytic Combinatorics,", Cambridge University Press, (2009). doi: 10.1017/CBO9780511801655.

[7]

A. G. Hernández-Díaz and P. Moreno, Analysis and optimal control of a discrete-time queueing system under the $(m,N)$-policy,, Valuetools '06: Proceedings of the 1st International Conference on Performance Evaluation Methodologies and Tools, (2006).

[8]

D. P. Heyman, The T-policy for the M/G/1 queue,, Management Science, 23 (1977), 775. doi: 10.1287/mnsc.23.7.775.

[9]

J.-C. Ke, Optimal $NT$ policies for M/G/1 system with a startup and unreliable server,, Computers & Industrial Engineering, 50 (2006), 248. doi: 10.1016/j.cie.2006.04.004.

[10]

J.-C. Ke, H.-I Huang and Y.-K. Chu, Batch arrival queue with $N$-policy and at most $J$ vacations,, Applied Mathematical Modelling, 34 (2010), 451. doi: 10.1016/j.apm.2009.06.003.

[11]

H. W. Lee and W. J. Seo, The performance of the M/G/1 queue under the dyadic Min($N,D$)-policy and its cost optimization,, Performance Evaluation, 65 (2008), 742.

[12]

S. S. Lee, H. W. Lee and K. C. Chae, Batch arrival queue with $N$-policy and single vacation,, Computers & Operations Research, 22 (1995), 173.

[13]

P. Moreno, A discrete-time single-server queue with a modified $N$-policy,, International Journal of Systems Science, 38 (2007), 483. doi: 10.1080/00207720701353405.

[14]

H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 3: Discrete-Time Systems,", North-Holland, (1993).

[15]

K.-H. Wang, T.-Y. Wang and W. L. Pearn, Optimal control of the $N$-policy M/G/1 queueing system with server breakdowns and general startup times,, Applied Mathematical Modelling, 31 (2007), 2199. doi: 10.1016/j.apm.2006.08.016.

[16]

T.-Y. Wang, K.-H. Wang and W. L. Pearn, Optimization of the $T$ policy M/G/1 queue with server breakdowns and general startup times,, Journal of Computational and Applied Mathematics, 228 (2009), 270. doi: 10.1016/j.cam.2008.09.021.

[17]

M. Yadin and P. Naor, Queueing systems with a removable service station,, Operational Research Quarterly, 14 (1963), 393.

[1]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[2]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[3]

Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial & Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299

[4]

Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89

[5]

Shunfu Jin, Yuan Zhao, Wuyi Yue, Lingling Chen. Performance analysis of a P2P storage system with a lazy replica repair policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 151-166. doi: 10.3934/jimo.2014.10.151

[6]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[7]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[8]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018157

[9]

Alexander O. Brown, Christopher S. Tang. The impact of alternative performance measures on single-period inventory policy. Journal of Industrial & Management Optimization, 2006, 2 (3) : 297-318. doi: 10.3934/jimo.2006.2.297

[10]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[11]

Jianyu Cao, Weixin Xie. Optimization of a condition-based duration-varying preventive maintenance policy for the stockless production system based on queueing model. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1049-1083. doi: 10.3934/jimo.2018085

[12]

Lotfi Tadj, Zhe George Zhang, Chakib Tadj. A queueing analysis of multi-purpose production facility's operations. Journal of Industrial & Management Optimization, 2011, 7 (1) : 19-30. doi: 10.3934/jimo.2011.7.19

[13]

Yoshiaki Kawase, Shoji Kasahara. Priority queueing analysis of transaction-confirmation time for Bitcoin. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018193

[14]

Zhanqiang Huo, Wuyi Yue, Naishuo Tian, Shunfu Jin. Performance evaluation for the sleep mode in the IEEE 802.16e based on a queueing model with close-down time and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 511-524. doi: 10.3934/jimo.2009.5.511

[15]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

[16]

Yuan Zhao, Shunfu Jin, Wuyi Yue. Adjustable admission control with threshold in centralized CR networks: Analysis and optimization. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1393-1408. doi: 10.3934/jimo.2015.11.1393

[17]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[18]

Bailey Kacsmar, Douglas R. Stinson. A network reliability approach to the analysis of combinatorial repairable threshold schemes. Advances in Mathematics of Communications, 2019, 13 (4) : 601-612. doi: 10.3934/amc.2019037

[19]

Kyosuke Hashimoto, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of backup-task scheduling with deadline time in cloud computing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 867-886. doi: 10.3934/jimo.2015.11.867

[20]

Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: Analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]