Citation: |
[1] |
A. S. Alfa and W. Li, Optimal ($N$,$T$)-policy for M/G/1 system with cost structures, Performance Evaluation, 42 (2000), 265-277.doi: 10.1016/S0166-5316(00)00015-8. |
[2] |
W. Böhm and S. G. Mohanty, On discrete-time Markovian $N$-policy queues involving batches, Sankhya: The Indian Journal of Statistics, Series A, 56 (1994), 144-163. |
[3] |
O. J. Boxma and W. P. Groenendijk, Waiting times in discrete-time cyclic-service systems, IEEE Transactions on Communications, 36 (1988), 164-170.doi: 10.1109/26.2746. |
[4] |
H. Bruneel and B. G. Kim, "Discrete-Time Models for Communication Systems Including ATM," The Springer International Series In Engineering And Computer Science, 205 (1993).doi: 10.1007/978-1-4615-3130-2. |
[5] |
B. Feyaerts, S. De Vuyst, S. Wittevrongel and H. Bruneel, Analysis of a discrete-time queueing system with an $NT$-policy, ASMTA '10: 17th International Conference on Analytical and Stochastic Modeling Techniques and Applications, Cardiff, United Kingdom, 2010, Lecture Notes in Computer Science, 6148 (2010), 29-43.doi: 10.1007/978-3-642-13568-2_3. |
[6] |
P. Flajolet and R. Sedgewick, "Analytic Combinatorics," Cambridge University Press, Cambridge, 2009.doi: 10.1017/CBO9780511801655. |
[7] |
A. G. Hernández-Díaz and P. Moreno, Analysis and optimal control of a discrete-time queueing system under the $(m,N)$-policy, Valuetools '06: Proceedings of the 1st International Conference on Performance Evaluation Methodologies and Tools, Pisa, Italy, 2006. |
[8] |
D. P. Heyman, The T-policy for the M/G/1 queue, Management Science, 23 (1977), 775-778.doi: 10.1287/mnsc.23.7.775. |
[9] |
J.-C. Ke, Optimal $NT$ policies for M/G/1 system with a startup and unreliable server, Computers & Industrial Engineering, 50 (2006), 248-262.doi: 10.1016/j.cie.2006.04.004. |
[10] |
J.-C. Ke, H.-I Huang and Y.-K. Chu, Batch arrival queue with $N$-policy and at most $J$ vacations, Applied Mathematical Modelling, 34 (2010), 451-466.doi: 10.1016/j.apm.2009.06.003. |
[11] |
H. W. Lee and W. J. Seo, The performance of the M/G/1 queue under the dyadic Min($N,D$)-policy and its cost optimization, Performance Evaluation, 65 (2008), 742-758. |
[12] |
S. S. Lee, H. W. Lee and K. C. Chae, Batch arrival queue with $N$-policy and single vacation, Computers & Operations Research, 22 (1995), 173-189. |
[13] |
P. Moreno, A discrete-time single-server queue with a modified $N$-policy, International Journal of Systems Science, 38 (2007), 483-492.doi: 10.1080/00207720701353405. |
[14] |
H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 3: Discrete-Time Systems," North-Holland, Amsterdam, The Netherlands, 1993. |
[15] |
K.-H. Wang, T.-Y. Wang and W. L. Pearn, Optimal control of the $N$-policy M/G/1 queueing system with server breakdowns and general startup times, Applied Mathematical Modelling, 31 (2007), 2199-2212.doi: 10.1016/j.apm.2006.08.016. |
[16] |
T.-Y. Wang, K.-H. Wang and W. L. Pearn, Optimization of the $T$ policy M/G/1 queue with server breakdowns and general startup times, Journal of Computational and Applied Mathematics, 228 (2009), 270-278.doi: 10.1016/j.cam.2008.09.021. |
[17] |
M. Yadin and P. Naor, Queueing systems with a removable service station, Operational Research Quarterly, 14 (1963), 393-405. |