- Previous Article
- JIMO Home
- This Issue
-
Next Article
Distributed optimal dispatch of virtual power plant based on ELM transformation
A note on preinvexity
1. | Department of Mathematics, Chongqing Normal University, Chongqing 400047 |
References:
[1] |
S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908.
doi: 10.1006/jmaa.1995.1057. |
[2] |
X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions, Journal of Optimization Theory and Applications, 110 (2001), 645-668.
doi: 10.1023/A:1017544513305. |
[3] |
X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, Journal of Optimization Theory and Applications, 117 (2003), 607-625.
doi: 10.1023/A:1023953823177. |
[4] |
X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities, European Journal of Operational Research, 164 (2005), 115-119.
doi: 10.1016/j.ejor.2003.11.017. |
[5] |
D. H. Yuan, X. L. Liu and G. M. Lai, Note on generalized invex functions, Optimization Letters, 7 (2013), 617-623.
doi: 10.1007/s11590-012-0446-z. |
[6] |
C. Zălinescu, A Critical View on Invexity, Journal of Optimization Theory and Applications, [DOI 10.1007/s10957-013-0506-2].
doi: DOI 10.1007/s10957-013-0506-2. |
show all references
References:
[1] |
S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908.
doi: 10.1006/jmaa.1995.1057. |
[2] |
X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions, Journal of Optimization Theory and Applications, 110 (2001), 645-668.
doi: 10.1023/A:1017544513305. |
[3] |
X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, Journal of Optimization Theory and Applications, 117 (2003), 607-625.
doi: 10.1023/A:1023953823177. |
[4] |
X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities, European Journal of Operational Research, 164 (2005), 115-119.
doi: 10.1016/j.ejor.2003.11.017. |
[5] |
D. H. Yuan, X. L. Liu and G. M. Lai, Note on generalized invex functions, Optimization Letters, 7 (2013), 617-623.
doi: 10.1007/s11590-012-0446-z. |
[6] |
C. Zălinescu, A Critical View on Invexity, Journal of Optimization Theory and Applications, [DOI 10.1007/s10957-013-0506-2].
doi: DOI 10.1007/s10957-013-0506-2. |
[1] |
Thierry Champion, Luigi De Pascale. On the twist condition and $c$-monotone transport plans. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1339-1353. doi: 10.3934/dcds.2014.34.1339 |
[2] |
Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152 |
[3] |
Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581 |
[4] |
Pablo Sánchez, Jaume Sempere. Conflict, private and communal property. Journal of Dynamics and Games, 2016, 3 (4) : 355-369. doi: 10.3934/jdg.2016019 |
[5] |
Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113 |
[6] |
Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991 |
[7] |
Peng Sun. Minimality and gluing orbit property. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162 |
[8] |
Bo Su. Doubling property of elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (1) : 143-147. doi: 10.3934/cpaa.2008.7.143 |
[9] |
Jinjun Li, Min Wu. Generic property of irregular sets in systems satisfying the specification property. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 635-645. doi: 10.3934/dcds.2014.34.635 |
[10] |
Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037 |
[11] |
Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101 |
[12] |
Manseob Lee, Jumi Oh, Xiao Wen. Diffeomorphisms with a generalized Lipschitz shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1913-1927. doi: 10.3934/dcds.2020346 |
[13] |
Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123 |
[14] |
Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315 |
[15] |
Shair Ahmad, Alan C. Lazer. On a property of a generalized Kolmogorov population model. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 1-6. doi: 10.3934/dcds.2013.33.1 |
[16] |
Mário Jorge Dias Carneiro, Alexandre Rocha. A generic property of exact magnetic Lagrangians. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4183-4194. doi: 10.3934/dcds.2012.32.4183 |
[17] |
Konstantinos Drakakis. On the generalization of the Costas property in higher dimensions. Advances in Mathematics of Communications, 2010, 4 (1) : 1-22. doi: 10.3934/amc.2010.4.1 |
[18] |
Hermann Köenig, Vitali Milman. Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$. Electronic Research Announcements, 2011, 18: 54-60. doi: 10.3934/era.2011.18.54 |
[19] |
Elamin H. Elbasha. Model for hepatitis C virus transmissions. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1045-1065. doi: 10.3934/mbe.2013.10.1045 |
[20] |
Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]