October  2014, 10(4): 1319-1321. doi: 10.3934/jimo.2014.10.1319

A note on preinvexity

1. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047

Received  August 2013 Revised  September 2013 Published  February 2014

In this note, we obtain an important property from Condition $C$. Using the property, we can provide short proofs for some properties of (generalized) preinvex functions.
Citation: Xinmin Yang. A note on preinvexity. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1319-1321. doi: 10.3934/jimo.2014.10.1319
References:
[1]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions,, Journal of Mathematical Analysis and Applications, 189 (1995), 901.  doi: 10.1006/jmaa.1995.1057.  Google Scholar

[2]

X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions,, Journal of Optimization Theory and Applications, 110 (2001), 645.  doi: 10.1023/A:1017544513305.  Google Scholar

[3]

X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity,, Journal of Optimization Theory and Applications, 117 (2003), 607.  doi: 10.1023/A:1023953823177.  Google Scholar

[4]

X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities,, European Journal of Operational Research, 164 (2005), 115.  doi: 10.1016/j.ejor.2003.11.017.  Google Scholar

[5]

D. H. Yuan, X. L. Liu and G. M. Lai, Note on generalized invex functions,, Optimization Letters, 7 (2013), 617.  doi: 10.1007/s11590-012-0446-z.  Google Scholar

[6]

C. Zălinescu, A Critical View on Invexity,, Journal of Optimization Theory and Applications, (): 10957.  doi: DOI 10.1007/s10957-013-0506-2.  Google Scholar

show all references

References:
[1]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions,, Journal of Mathematical Analysis and Applications, 189 (1995), 901.  doi: 10.1006/jmaa.1995.1057.  Google Scholar

[2]

X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions,, Journal of Optimization Theory and Applications, 110 (2001), 645.  doi: 10.1023/A:1017544513305.  Google Scholar

[3]

X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity,, Journal of Optimization Theory and Applications, 117 (2003), 607.  doi: 10.1023/A:1023953823177.  Google Scholar

[4]

X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities,, European Journal of Operational Research, 164 (2005), 115.  doi: 10.1016/j.ejor.2003.11.017.  Google Scholar

[5]

D. H. Yuan, X. L. Liu and G. M. Lai, Note on generalized invex functions,, Optimization Letters, 7 (2013), 617.  doi: 10.1007/s11590-012-0446-z.  Google Scholar

[6]

C. Zălinescu, A Critical View on Invexity,, Journal of Optimization Theory and Applications, (): 10957.  doi: DOI 10.1007/s10957-013-0506-2.  Google Scholar

[1]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[2]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[3]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[4]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[5]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[6]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[7]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[8]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231

[9]

Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[12]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[13]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[14]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[15]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[16]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[17]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]