October  2014, 10(4): 1319-1321. doi: 10.3934/jimo.2014.10.1319

A note on preinvexity

1. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047

Received  August 2013 Revised  September 2013 Published  February 2014

In this note, we obtain an important property from Condition $C$. Using the property, we can provide short proofs for some properties of (generalized) preinvex functions.
Citation: Xinmin Yang. A note on preinvexity. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1319-1321. doi: 10.3934/jimo.2014.10.1319
References:
[1]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions,, Journal of Mathematical Analysis and Applications, 189 (1995), 901. doi: 10.1006/jmaa.1995.1057. Google Scholar

[2]

X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions,, Journal of Optimization Theory and Applications, 110 (2001), 645. doi: 10.1023/A:1017544513305. Google Scholar

[3]

X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity,, Journal of Optimization Theory and Applications, 117 (2003), 607. doi: 10.1023/A:1023953823177. Google Scholar

[4]

X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities,, European Journal of Operational Research, 164 (2005), 115. doi: 10.1016/j.ejor.2003.11.017. Google Scholar

[5]

D. H. Yuan, X. L. Liu and G. M. Lai, Note on generalized invex functions,, Optimization Letters, 7 (2013), 617. doi: 10.1007/s11590-012-0446-z. Google Scholar

[6]

C. Zălinescu, A Critical View on Invexity,, Journal of Optimization Theory and Applications, (): 10957. doi: DOI 10.1007/s10957-013-0506-2. Google Scholar

show all references

References:
[1]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions,, Journal of Mathematical Analysis and Applications, 189 (1995), 901. doi: 10.1006/jmaa.1995.1057. Google Scholar

[2]

X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions,, Journal of Optimization Theory and Applications, 110 (2001), 645. doi: 10.1023/A:1017544513305. Google Scholar

[3]

X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity,, Journal of Optimization Theory and Applications, 117 (2003), 607. doi: 10.1023/A:1023953823177. Google Scholar

[4]

X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities,, European Journal of Operational Research, 164 (2005), 115. doi: 10.1016/j.ejor.2003.11.017. Google Scholar

[5]

D. H. Yuan, X. L. Liu and G. M. Lai, Note on generalized invex functions,, Optimization Letters, 7 (2013), 617. doi: 10.1007/s11590-012-0446-z. Google Scholar

[6]

C. Zălinescu, A Critical View on Invexity,, Journal of Optimization Theory and Applications, (): 10957. doi: DOI 10.1007/s10957-013-0506-2. Google Scholar

[1]

Thierry Champion, Luigi De Pascale. On the twist condition and $c$-monotone transport plans. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1339-1353. doi: 10.3934/dcds.2014.34.1339

[2]

Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581

[3]

Pablo Sánchez, Jaume Sempere. Conflict, private and communal property. Journal of Dynamics & Games, 2016, 3 (4) : 355-369. doi: 10.3934/jdg.2016019

[4]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[5]

Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

[6]

Bo Su. Doubling property of elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 143-147. doi: 10.3934/cpaa.2008.7.143

[7]

Peng Sun. Minimality and gluing orbit property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[8]

Jinjun Li, Min Wu. Generic property of irregular sets in systems satisfying the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 635-645. doi: 10.3934/dcds.2014.34.635

[9]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

[10]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[11]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[12]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[13]

Shair Ahmad, Alan C. Lazer. On a property of a generalized Kolmogorov population model. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 1-6. doi: 10.3934/dcds.2013.33.1

[14]

Mário Jorge Dias Carneiro, Alexandre Rocha. A generic property of exact magnetic Lagrangians. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4183-4194. doi: 10.3934/dcds.2012.32.4183

[15]

Konstantinos Drakakis. On the generalization of the Costas property in higher dimensions. Advances in Mathematics of Communications, 2010, 4 (1) : 1-22. doi: 10.3934/amc.2010.4.1

[16]

Hermann Köenig, Vitali Milman. Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$. Electronic Research Announcements, 2011, 18: 54-60. doi: 10.3934/era.2011.18.54

[17]

Elamin H. Elbasha. Model for hepatitis C virus transmissions. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1045-1065. doi: 10.3934/mbe.2013.10.1045

[18]

Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683

[19]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[20]

Søren Eilers. C *-algebras associated to dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 177-192. doi: 10.3934/dcds.2006.15.177

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]