- Previous Article
- JIMO Home
- This Issue
-
Next Article
Distributed optimal dispatch of virtual power plant based on ELM transformation
A note on preinvexity
1. | Department of Mathematics, Chongqing Normal University, Chongqing 400047 |
References:
[1] |
S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions,, Journal of Mathematical Analysis and Applications, 189 (1995), 901.
doi: 10.1006/jmaa.1995.1057. |
[2] |
X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions,, Journal of Optimization Theory and Applications, 110 (2001), 645.
doi: 10.1023/A:1017544513305. |
[3] |
X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity,, Journal of Optimization Theory and Applications, 117 (2003), 607.
doi: 10.1023/A:1023953823177. |
[4] |
X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities,, European Journal of Operational Research, 164 (2005), 115.
doi: 10.1016/j.ejor.2003.11.017. |
[5] |
D. H. Yuan, X. L. Liu and G. M. Lai, Note on generalized invex functions,, Optimization Letters, 7 (2013), 617.
doi: 10.1007/s11590-012-0446-z. |
[6] |
C. Zălinescu, A Critical View on Invexity,, Journal of Optimization Theory and Applications, (): 10957.
doi: DOI 10.1007/s10957-013-0506-2. |
show all references
References:
[1] |
S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions,, Journal of Mathematical Analysis and Applications, 189 (1995), 901.
doi: 10.1006/jmaa.1995.1057. |
[2] |
X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions,, Journal of Optimization Theory and Applications, 110 (2001), 645.
doi: 10.1023/A:1017544513305. |
[3] |
X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity,, Journal of Optimization Theory and Applications, 117 (2003), 607.
doi: 10.1023/A:1023953823177. |
[4] |
X. M. Yang, X. Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities,, European Journal of Operational Research, 164 (2005), 115.
doi: 10.1016/j.ejor.2003.11.017. |
[5] |
D. H. Yuan, X. L. Liu and G. M. Lai, Note on generalized invex functions,, Optimization Letters, 7 (2013), 617.
doi: 10.1007/s11590-012-0446-z. |
[6] |
C. Zălinescu, A Critical View on Invexity,, Journal of Optimization Theory and Applications, (): 10957.
doi: DOI 10.1007/s10957-013-0506-2. |
[1] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[2] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
[3] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[4] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[5] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[6] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[7] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[8] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
[9] |
Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006 |
[10] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[11] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[12] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[13] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[14] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[15] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
[16] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[17] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]