January  2014, 10(1): 167-192. doi: 10.3934/jimo.2014.10.167

A dual tandem queueing system with GI service time at the first queue

1. 

Department of Telecommunications, Budapest University of Technology and Economics, Budapest

2. 

Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, Kobe 658-8501

Received  September 2012 Revised  June 2013 Published  October 2013

In this paper we consider the analysis of a tandem queueing model $M/G/1 -> ./M/1$. In contrast to the vast majority of the previous literature on tandem queuing models we consider the case with GI service time at the first queue and with infinite buffers. The system can be described by an M/G/1-type Markov process at the departure epochs of the first queue. The main result of the paper is the steady-state vector generating function at the embedded epochs, which characterizes the joint distribution of the number of customers at both queues. The steady-state Laplace-Stieljes transform and the mean of the sojourn time of the customers in the system are also obtained.
    We provide numerical examples and discuss the dependency of the steady-state mean of the sojourn time of the customers on several basic system parameters. Utilizing the structural characteristics of the model we discuss the interpretation of the results. This gives an insight into the behavior of this tandem queuing model and can be a base for developing approximations for it.
Citation: Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167
References:
[1]

D. Bertsekas and R. Gallager, "Data Networks,", 2nd Edition, (1991). Google Scholar

[2]

O. J. Boxma and J. A. C. Resing, Tandem queues with deterministic service times,, Annals of Operations Research, 49 (1994), 221. doi: 10.1007/BF02031599. Google Scholar

[3]

G. Casale, P. G. Harrison and M. Vigliotti, Product-Form Approximation of Tandem Queues via Matrix Geometric Methods,, in, (2010). Google Scholar

[4]

A. N. Dudin, C. S. Kim, V. I. Klimenok and O. S. Taramin, A dual tandem queueing system with a finite intermediate buffer and cross traffic,, in, (2010), 102. doi: 10.1145/1837856.1837872. Google Scholar

[5]

A. Heindl, Decomposition of general tandem queueing networks with mmpp input,, Performance Evaluation, 44 (2001), 5. Google Scholar

[6]

B. Van Houdt and A. S. Alfa, Response time in a tandem queue with blocking, Markovian arrivals and phase-type services,, Operations Research Letters, 33 (2005), 373. doi: 10.1016/j.orl.2004.08.004. Google Scholar

[7]

L. Kleinrock, "Queuing Systems. Vol I: Theory,", John Wiley, (1975). Google Scholar

[8]

V. Klimenok, A. Dudin and V. Vishnevsky, On the stationary distribution of tandem queue consisting of a finite number of stations,, in, 291 (2012), 383. doi: 10.1007/978-3-642-31217-5_40. Google Scholar

[9]

G. Latouche and V. Ramaswami, "Introduction to Matrix Geometric Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability,", Society for Industrial and Applied Mathematics (SIAM), (1999). doi: 10.1137/1.9780898719734. Google Scholar

[10]

L. Le and E. Hossain, Tandem queue models with applications to QoS routing in multihop wireless networks,, IEEE Trans. on Mobile Computing, 7 (2008), 1025. Google Scholar

[11]

D. L. Lucantoni, New results on the single server queue with a batch markovian arrival process,, Comm. Statist. Stochastic Models, 7 (1991), 1. doi: 10.1080/15326349108807174. Google Scholar

[12]

R. A. Marie, Calculating equilibrium probabilities for $\lambda(n)$/$C_k$/1/N queue,, in, (1980), 117. Google Scholar

[13]

D. G. Pandelis, Optimal control of flexible servers in two tandem queues with operating costs,, Probability in the Engineering and Informational Sciences, 22 (2008), 107. doi: 10.1017/S0269964808000077. Google Scholar

[14]

Y. E. Sagduyu and A. Ephremides, Network Coding in Wireless Queueing Networks: Tandem Network Case,, in, (2006). Google Scholar

[15]

M. van Vuuren, "Performance Analysis of Manufacturing Systems: Queueing Approximations and Algorithms,", Ph.D thesis, (2007). Google Scholar

[16]

M. van Vuuren, I. J. B. F. Adan and A. E. Resing-Sassenb, Performance analysis of multi-server tandem queues with finite buffers and blocking,, OR Spektrum, 27 (2005), 315. doi: 10.1007/s00291-004-0189-z. Google Scholar

show all references

References:
[1]

D. Bertsekas and R. Gallager, "Data Networks,", 2nd Edition, (1991). Google Scholar

[2]

O. J. Boxma and J. A. C. Resing, Tandem queues with deterministic service times,, Annals of Operations Research, 49 (1994), 221. doi: 10.1007/BF02031599. Google Scholar

[3]

G. Casale, P. G. Harrison and M. Vigliotti, Product-Form Approximation of Tandem Queues via Matrix Geometric Methods,, in, (2010). Google Scholar

[4]

A. N. Dudin, C. S. Kim, V. I. Klimenok and O. S. Taramin, A dual tandem queueing system with a finite intermediate buffer and cross traffic,, in, (2010), 102. doi: 10.1145/1837856.1837872. Google Scholar

[5]

A. Heindl, Decomposition of general tandem queueing networks with mmpp input,, Performance Evaluation, 44 (2001), 5. Google Scholar

[6]

B. Van Houdt and A. S. Alfa, Response time in a tandem queue with blocking, Markovian arrivals and phase-type services,, Operations Research Letters, 33 (2005), 373. doi: 10.1016/j.orl.2004.08.004. Google Scholar

[7]

L. Kleinrock, "Queuing Systems. Vol I: Theory,", John Wiley, (1975). Google Scholar

[8]

V. Klimenok, A. Dudin and V. Vishnevsky, On the stationary distribution of tandem queue consisting of a finite number of stations,, in, 291 (2012), 383. doi: 10.1007/978-3-642-31217-5_40. Google Scholar

[9]

G. Latouche and V. Ramaswami, "Introduction to Matrix Geometric Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability,", Society for Industrial and Applied Mathematics (SIAM), (1999). doi: 10.1137/1.9780898719734. Google Scholar

[10]

L. Le and E. Hossain, Tandem queue models with applications to QoS routing in multihop wireless networks,, IEEE Trans. on Mobile Computing, 7 (2008), 1025. Google Scholar

[11]

D. L. Lucantoni, New results on the single server queue with a batch markovian arrival process,, Comm. Statist. Stochastic Models, 7 (1991), 1. doi: 10.1080/15326349108807174. Google Scholar

[12]

R. A. Marie, Calculating equilibrium probabilities for $\lambda(n)$/$C_k$/1/N queue,, in, (1980), 117. Google Scholar

[13]

D. G. Pandelis, Optimal control of flexible servers in two tandem queues with operating costs,, Probability in the Engineering and Informational Sciences, 22 (2008), 107. doi: 10.1017/S0269964808000077. Google Scholar

[14]

Y. E. Sagduyu and A. Ephremides, Network Coding in Wireless Queueing Networks: Tandem Network Case,, in, (2006). Google Scholar

[15]

M. van Vuuren, "Performance Analysis of Manufacturing Systems: Queueing Approximations and Algorithms,", Ph.D thesis, (2007). Google Scholar

[16]

M. van Vuuren, I. J. B. F. Adan and A. E. Resing-Sassenb, Performance analysis of multi-server tandem queues with finite buffers and blocking,, OR Spektrum, 27 (2005), 315. doi: 10.1007/s00291-004-0189-z. Google Scholar

[1]

Tatsuaki Kimura, Hiroyuki Masuyama, Yutaka Takahashi. Light-tailed asymptotics of GI/G/1-type Markov chains. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2093-2146. doi: 10.3934/jimo.2017033

[2]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[3]

Jerim Kim, Bara Kim, Hwa-Sung Kim. G/M/1 type structure of a risk model with general claim sizes in a Markovian environment. Journal of Industrial & Management Optimization, 2012, 8 (4) : 909-924. doi: 10.3934/jimo.2012.8.909

[4]

Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609

[5]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[6]

Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89

[7]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[8]

Wenxiang Liu, Thomas Hillen, H. I. Freedman. A mathematical model for M-phase specific chemotherapy including the $G_0$-phase and immunoresponse. Mathematical Biosciences & Engineering, 2007, 4 (2) : 239-259. doi: 10.3934/mbe.2007.4.239

[9]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[10]

Wai-Ki Ching, Tang Li, Sin-Man Choi, Issic K. C. Leung. A tandem queueing system with applications to pricing strategy. Journal of Industrial & Management Optimization, 2009, 5 (1) : 103-114. doi: 10.3934/jimo.2009.5.103

[11]

Christophe Berthon, Rodolphe Turpault. A numerical correction of the $M1$-model in the diffusive limit. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 245-255. doi: 10.3934/dcdss.2012.5.245

[12]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[13]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[14]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[15]

Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks & Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67

[16]

Kengo Matsumoto. On the Markov-Dyck shifts of vertex type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 403-422. doi: 10.3934/dcds.2016.36.403

[17]

Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic & Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9

[18]

Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial & Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811

[19]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

[20]

Wei Li, Hengming Zhao, Rongcun Qin, Dianhua Wu. Constructions of optimal balanced $ (m, n, \{4, 5\}, 1) $-OOSPCs. Advances in Mathematics of Communications, 2019, 13 (2) : 329-341. doi: 10.3934/amc.2019022

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]