January  2014, 10(1): 243-258. doi: 10.3934/jimo.2014.10.243

A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors

1. 

Laboratory of Theoretical and Applied Computer Science (LITA), University of Lorraine, Ile du Saulcy, 57045, Metz, France, France

2. 

LGIPM, INRIA Costeam, Ecole National d’Ing´enieurs de Metz, France

Received  January 2012 Revised  July 2013 Published  October 2013

In this paper, we introduce a new approach based on DC (Difference of Convex functions) Programming and DCA (DC Algorithm) for minimizing the maintenance cost involving flow-time and tardiness penalties by optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. The main idea is to divide the horizon considered into $H$ intervals. The problem is first formulated as a mixed integer linear problem (MILP) and then reformulated as a DC program. A solution method based on DCA is used to solve the resulting problem. The efficiency of DCA is compared with the algorithm based on the new flow-time and tardiness rule (FTR) given in [1]. The computational results on several test problems show that the solutions provided by DCA are better.
Citation: Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial & Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243
References:
[1]

K. H. Adjallah and K. P. Adzakpa, Minimizing maintenance cost involving flow-time and tardiness penalty with unequal release dates,, In Press of Journal of Risk and Reliability, 221 (2007), 57.   Google Scholar

[2]

K. P. Adzakpa, "Maintenance of Distributed Systems: Methods for Real-Time Decision-Making,", PhD Thesis, (2004).   Google Scholar

[3]

M. Berg, The marginal cost analysis and its application to repair and replacement policies,, European Journal of Operational Research, 82 (1995), 214.   Google Scholar

[4]

E. K. Burke and A. J. Smith, Hybrid evolutionary techniques for the maintenance scheduling problem,, Ieee2000 Trans. on Power Systems, 15 (2000), 122.   Google Scholar

[5]

C. Derman, G. J. Lieberman and S. M. Ross, On the optimal assignment of servers and a repairman,, Journal of Applied Probability, 17 (1980), 577.  doi: 10.2307/3213050.  Google Scholar

[6]

C. Duron, M. A. Ould Louly and J.-M. Proth, The one machine scheduling problem: Insertion of a job under the real-time constraint,, European Journal of Operational Research, 199 (2009), 695.  doi: 10.1016/j.ejor.2007.09.048.  Google Scholar

[7]

E. Frostig, Jointly optimal allocation of a repairman and optimal control of service rate for machine repairman problem,, European Journal of Operational Research, 116 (1999), 274.   Google Scholar

[8]

E. Frostig, Optimal allocation of machines to distinguishable repairmen in order to maximize some reward functions,, Probability in the Engineering and Informational Sciences, 9 (1995), 633.  doi: 10.1017/S0269964800004113.  Google Scholar

[9]

E. Frostig, Optimal policies for machine repairmen problems,, Journal of Applied Probability, 30 (1993), 703.  doi: 10.2307/3214776.  Google Scholar

[10]

M. Gopalakrishnan, S. Mohan and Z. He, A tabu search heuristic for preventive maintenance scheduling,, Computers & Industrial Engineering, 40 (2001), 149.   Google Scholar

[11]

G. Graves and C. Lee, Scheduling maintenance and semiresumable jobs on a single machine,, Naval Research Logistics, 46 (1999), 845.   Google Scholar

[12]

G. Koole, Optimal repairman assignment in two symmetric maintenance models, , European Journal of Operational Research, 82 (1995), 295.   Google Scholar

[13]

H. A. Le Thi and T. Pham Dinh, Solving a class of linearly constrained indefinite quadratic problems by DC algorithms,, Journal of Global Optimization, 11 (1997), 253.  doi: 10.1023/A:1008288411710.  Google Scholar

[14]

H. A. Le Thi and T. Pham Dinh, A Continuous approach for globally solving linearly constrained quadratic zero-one programming problem,, Optimization, 50 (2001), 93.  doi: 10.1080/02331930108844555.  Google Scholar

[15]

H. A. Le Thi and T. Pham Dinh, The DC(difference of convex functions) Programming and DCA revisited with DC models of real world non convex optimization problems,, Annals of Operations Research, 133 (2005), 23.  doi: 10.1007/s10479-004-5022-1.  Google Scholar

[16]

H. A. Le Thi, T. Pham Dinh and M. Le Dung, Exact penalty in d.c. programming,, Vietnam Journal of Mathematics, 27 (1999), 169.   Google Scholar

[17]

H. A. Le Thi and T. Pham Dinh, A continuous approach for the concave cost supply problem via DC programming and DCA,, Discrete Applied Mathematics, 156 (2008), 325.  doi: 10.1016/j.dam.2007.03.024.  Google Scholar

[18]

C. Lee and Z. Chen, Scheduling jobs and maintenance activities on parallel machines,, Naval Research Logistics, 47 (2000), 145.  doi: 10.1002/(SICI)1520-6750(200003)47:2<145::AID-NAV5>3.0.CO;2-3.  Google Scholar

[19]

J. Lenstra, A. R. Kan and P. Brucker, Complexity of machine scheduling problems,, Annals of Discrete Mathematics, 1 (1977), 343.   Google Scholar

[20]

Z. Li, H. Liao, L-Y. Chan and A. Elsayed, Maintenance of continuously degrading systems considering random service delays,, Proceedings of the 2008 Industrial Research Conference (IERC), (2008), 17.   Google Scholar

[21]

S-T. Lo, R-M. Chen, Y-M. Huang and C-L. Wu, Multiprocessor system scheduling with precedence and resource constraints using an enhanced ant colony system,, Expert Systems with Applications, 34 (2008), 2071.   Google Scholar

[22]

T. Pham Dinh and H. A. Le Thi, Convex analysis approach to d.c programming: Theory, algorithms and applications,, Acta Mathematica Vietnamica, 22 (1997), 289.   Google Scholar

[23]

T. Pham Dinh and H. A. Le Thi, DC optimization algorihms for solving the trust region subproblem,, SIAM J.Optimization, 8 (1997), 476.   Google Scholar

[24]

K. Park, Optimal number of minimal repairs before replacement,, IEEE Transactions on Reliability, R-28 (1979), 137.   Google Scholar

[25]

X. Qi, T. Chen and F. Tu, Scheduling the maintenance on a single machine,, Journal of the Operation Research Society, 50 (1999), 1071.   Google Scholar

[26]

R.T. Rockafellar, "Convex analysis Princeton University Press,", Princeton University Press, (1970).   Google Scholar

[27]

S. Seshadri, Determination of aggregate preventive maintenance programs using production schedules,, Computers and Industrial Engineering, 14 (1988), 193.   Google Scholar

[28]

W. Stadje and D. Zuckerman, Optimal repair policies with general degree of repair in two maintenance models,, Operations Research Letters, 11 (1992), 77.  doi: 10.1016/0167-6377(92)90036-3.  Google Scholar

[29]

H. Tajima, J. Sugimoto, T. Funabashi and R. Yokoyama, Auction price-based thermal unit maintenance scheduling by reactive tabu search,, Proc. 41st IEEE Int. UPEC'06 (Universities Power Engineering Conference), (2006).   Google Scholar

[30]

L. Weinstein and C. Chung, Integrating maintenance and production decisions in a hierarchical production planning environment,, Computer and Operations Research, 26 (1999), 1059.   Google Scholar

show all references

References:
[1]

K. H. Adjallah and K. P. Adzakpa, Minimizing maintenance cost involving flow-time and tardiness penalty with unequal release dates,, In Press of Journal of Risk and Reliability, 221 (2007), 57.   Google Scholar

[2]

K. P. Adzakpa, "Maintenance of Distributed Systems: Methods for Real-Time Decision-Making,", PhD Thesis, (2004).   Google Scholar

[3]

M. Berg, The marginal cost analysis and its application to repair and replacement policies,, European Journal of Operational Research, 82 (1995), 214.   Google Scholar

[4]

E. K. Burke and A. J. Smith, Hybrid evolutionary techniques for the maintenance scheduling problem,, Ieee2000 Trans. on Power Systems, 15 (2000), 122.   Google Scholar

[5]

C. Derman, G. J. Lieberman and S. M. Ross, On the optimal assignment of servers and a repairman,, Journal of Applied Probability, 17 (1980), 577.  doi: 10.2307/3213050.  Google Scholar

[6]

C. Duron, M. A. Ould Louly and J.-M. Proth, The one machine scheduling problem: Insertion of a job under the real-time constraint,, European Journal of Operational Research, 199 (2009), 695.  doi: 10.1016/j.ejor.2007.09.048.  Google Scholar

[7]

E. Frostig, Jointly optimal allocation of a repairman and optimal control of service rate for machine repairman problem,, European Journal of Operational Research, 116 (1999), 274.   Google Scholar

[8]

E. Frostig, Optimal allocation of machines to distinguishable repairmen in order to maximize some reward functions,, Probability in the Engineering and Informational Sciences, 9 (1995), 633.  doi: 10.1017/S0269964800004113.  Google Scholar

[9]

E. Frostig, Optimal policies for machine repairmen problems,, Journal of Applied Probability, 30 (1993), 703.  doi: 10.2307/3214776.  Google Scholar

[10]

M. Gopalakrishnan, S. Mohan and Z. He, A tabu search heuristic for preventive maintenance scheduling,, Computers & Industrial Engineering, 40 (2001), 149.   Google Scholar

[11]

G. Graves and C. Lee, Scheduling maintenance and semiresumable jobs on a single machine,, Naval Research Logistics, 46 (1999), 845.   Google Scholar

[12]

G. Koole, Optimal repairman assignment in two symmetric maintenance models, , European Journal of Operational Research, 82 (1995), 295.   Google Scholar

[13]

H. A. Le Thi and T. Pham Dinh, Solving a class of linearly constrained indefinite quadratic problems by DC algorithms,, Journal of Global Optimization, 11 (1997), 253.  doi: 10.1023/A:1008288411710.  Google Scholar

[14]

H. A. Le Thi and T. Pham Dinh, A Continuous approach for globally solving linearly constrained quadratic zero-one programming problem,, Optimization, 50 (2001), 93.  doi: 10.1080/02331930108844555.  Google Scholar

[15]

H. A. Le Thi and T. Pham Dinh, The DC(difference of convex functions) Programming and DCA revisited with DC models of real world non convex optimization problems,, Annals of Operations Research, 133 (2005), 23.  doi: 10.1007/s10479-004-5022-1.  Google Scholar

[16]

H. A. Le Thi, T. Pham Dinh and M. Le Dung, Exact penalty in d.c. programming,, Vietnam Journal of Mathematics, 27 (1999), 169.   Google Scholar

[17]

H. A. Le Thi and T. Pham Dinh, A continuous approach for the concave cost supply problem via DC programming and DCA,, Discrete Applied Mathematics, 156 (2008), 325.  doi: 10.1016/j.dam.2007.03.024.  Google Scholar

[18]

C. Lee and Z. Chen, Scheduling jobs and maintenance activities on parallel machines,, Naval Research Logistics, 47 (2000), 145.  doi: 10.1002/(SICI)1520-6750(200003)47:2<145::AID-NAV5>3.0.CO;2-3.  Google Scholar

[19]

J. Lenstra, A. R. Kan and P. Brucker, Complexity of machine scheduling problems,, Annals of Discrete Mathematics, 1 (1977), 343.   Google Scholar

[20]

Z. Li, H. Liao, L-Y. Chan and A. Elsayed, Maintenance of continuously degrading systems considering random service delays,, Proceedings of the 2008 Industrial Research Conference (IERC), (2008), 17.   Google Scholar

[21]

S-T. Lo, R-M. Chen, Y-M. Huang and C-L. Wu, Multiprocessor system scheduling with precedence and resource constraints using an enhanced ant colony system,, Expert Systems with Applications, 34 (2008), 2071.   Google Scholar

[22]

T. Pham Dinh and H. A. Le Thi, Convex analysis approach to d.c programming: Theory, algorithms and applications,, Acta Mathematica Vietnamica, 22 (1997), 289.   Google Scholar

[23]

T. Pham Dinh and H. A. Le Thi, DC optimization algorihms for solving the trust region subproblem,, SIAM J.Optimization, 8 (1997), 476.   Google Scholar

[24]

K. Park, Optimal number of minimal repairs before replacement,, IEEE Transactions on Reliability, R-28 (1979), 137.   Google Scholar

[25]

X. Qi, T. Chen and F. Tu, Scheduling the maintenance on a single machine,, Journal of the Operation Research Society, 50 (1999), 1071.   Google Scholar

[26]

R.T. Rockafellar, "Convex analysis Princeton University Press,", Princeton University Press, (1970).   Google Scholar

[27]

S. Seshadri, Determination of aggregate preventive maintenance programs using production schedules,, Computers and Industrial Engineering, 14 (1988), 193.   Google Scholar

[28]

W. Stadje and D. Zuckerman, Optimal repair policies with general degree of repair in two maintenance models,, Operations Research Letters, 11 (1992), 77.  doi: 10.1016/0167-6377(92)90036-3.  Google Scholar

[29]

H. Tajima, J. Sugimoto, T. Funabashi and R. Yokoyama, Auction price-based thermal unit maintenance scheduling by reactive tabu search,, Proc. 41st IEEE Int. UPEC'06 (Universities Power Engineering Conference), (2006).   Google Scholar

[30]

L. Weinstein and C. Chung, Integrating maintenance and production decisions in a hierarchical production planning environment,, Computer and Operations Research, 26 (1999), 1059.   Google Scholar

[1]

Xuewen Huang, Xiaotong Zhang, Sardar M. N. Islam, Carlos A. Vega-Mejía. An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-27. doi: 10.3934/jimo.2019088

[2]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019122

[3]

Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (2) : 703-717. doi: 10.3934/jimo.2016.12.703

[4]

Güvenç Şahin, Ravindra K. Ahuja. Single-machine scheduling with stepwise tardiness costs and release times. Journal of Industrial & Management Optimization, 2011, 7 (4) : 825-848. doi: 10.3934/jimo.2011.7.825

[5]

Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391

[6]

Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai. An efficient Tabu Search neighborhood based on reconstruction strategy to solve the blocking job shop scheduling problem. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2015-2031. doi: 10.3934/jimo.2017029

[7]

Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-34. doi: 10.3934/jimo.2019030

[8]

Ethel Mokotoff. Algorithms for bicriteria minimization in the permutation flow shop scheduling problem. Journal of Industrial & Management Optimization, 2011, 7 (1) : 253-282. doi: 10.3934/jimo.2011.7.253

[9]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[10]

Wen-Hung Wu, Yunqiang Yin, Wen-Hsiang Wu, Chin-Chia Wu, Peng-Hsiang Hsu. A time-dependent scheduling problem to minimize the sum of the total weighted tardiness among two agents. Journal of Industrial & Management Optimization, 2014, 10 (2) : 591-611. doi: 10.3934/jimo.2014.10.591

[11]

Ping Yan, Ji-Bo Wang, Li-Qiang Zhao. Single-machine bi-criterion scheduling with release times and exponentially time-dependent learning effects. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1117-1131. doi: 10.3934/jimo.2018088

[12]

Ji-Bo Wang, Mengqi Liu, Na Yin, Ping Ji. Scheduling jobs with controllable processing time, truncated job-dependent learning and deterioration effects. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1025-1039. doi: 10.3934/jimo.2016060

[13]

Zhao-Hong Jia, Ting-Ting Wen, Joseph Y.-T. Leung, Kai Li. Effective heuristics for makespan minimization in parallel batch machines with non-identical capacities and job release times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 977-993. doi: 10.3934/jimo.2016057

[14]

M. Ramasubramaniam, M. Mathirajan. A solution framework for scheduling a BPM with non-identical job dimensions. Journal of Industrial & Management Optimization, 2007, 3 (3) : 445-456. doi: 10.3934/jimo.2007.3.445

[15]

Chuanli Zhao, Yunqiang Yin, T. C. E. Cheng, Chin-Chia Wu. Single-machine scheduling and due date assignment with rejection and position-dependent processing times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 691-700. doi: 10.3934/jimo.2014.10.691

[16]

Hongwei Li, Yuvraj Gajpal, C. R. Bector. A survey of due-date related single-machine with two-agent scheduling problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019005

[17]

Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial & Management Optimization, 2014, 10 (3) : 817-826. doi: 10.3934/jimo.2014.10.817

[18]

Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradient-based convex approximations method for DC programming and its applications. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1349-1366. doi: 10.3934/jimo.2016.12.1349

[19]

Peng Guo, Wenming Cheng, Yi Wang. A general variable neighborhood search for single-machine total tardiness scheduling problem with step-deteriorating jobs. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1071-1090. doi: 10.3934/jimo.2014.10.1071

[20]

Zhichao Geng, Jinjiang Yuan. Scheduling family jobs on an unbounded parallel-batch machine to minimize makespan and maximum flow time. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1479-1500. doi: 10.3934/jimo.2018017

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

[Back to Top]