• Previous Article
    The control parameterization method for nonlinear optimal control: A survey
  • JIMO Home
  • This Issue
  • Next Article
    A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors
January  2014, 10(1): 259-273. doi: 10.3934/jimo.2014.10.259

Heuristics for parallel machine scheduling with batch delivery consideration

1. 

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China, China

Received  February 2012 Revised  March 2013 Published  October 2013

We consider the parallel machine scheduling problem in which the finished jobs need to be delivered to a customer in batches by a single vehicle. The goal is to minimize the makespan, i.e., the time by which the vehicle has delivered all jobs and returned to its initial location. We distinguish two types of batching strategies. The strategy of Type 1 permits the jobs processed on different machines to compose a delivery batch, and the strategy of Type 2 assumes that only the jobs processed on the same machine can compose a batch. For both types of the $m$-machine case, we propose $(2-\frac{1}{m})$-approximation algorithms respectively. For both types of the two-machine case, we obtain two improved $\frac{4}{3}$-approximation algorithms.
Citation: Leiyang Wang, Zhaohui Liu. Heuristics for parallel machine scheduling with batch delivery consideration. Journal of Industrial and Management Optimization, 2014, 10 (1) : 259-273. doi: 10.3934/jimo.2014.10.259
References:
[1]

J. H. Ahmadi, R. H. Ahmadi, S. Dasu and C. S. Tang, Batching and scheduling jobs on batch and discrete processors, Operations Research, 40 (1992), 750-763. doi: 10.1287/opre.40.4.750.

[2]

Y.-C. Chang and C.-Y. Lee, Machine scheduling with job delivery coordination, European Journal of Operational Research, 158 (2004), 470-487. doi: 10.1016/S0377-2217(03)00364-3.

[3]

Z.-L. Chen, Integrated production and outbound distribution scheduling: Review and extensions, Operations Research, 58 (2010), 130-148. doi: 10.1287/opre.1080.0688.

[4]

Z.-L. Chen and G. Pundoor, Order assignment and scheduling in a supply chain, Operations Research, 54 (2006), 555-572. doi: 10.1287/opre.1060.0280.

[5]

Z.-L. Chen and G. Vairaktarakis, Integrated scheduling of production and distribution operations, Management Science, 51 (2005), 614-628. doi: 10.1287/mnsc.1040.0325.

[6]

H. N. Geismar, G. Laporte, L. Lei and C. Sriskandarajah, The integrated production and transportation scheduling problem for a product with a short lifespan, INFORMS Journal on Computing, 20 (2008), 21-33. doi: 10.1287/ijoc.1060.0208.

[7]

H. Gong and L. X. Tang, Scheduling production on parallel machines and batch delivery with limited waiting time constraint, Control and Decision, 26 (2011), 921-924 (in Chinese).

[8]

R. L. Graham, Bounds for certain multiprocessing anomalies, The Bell System Technical Journal, 45 (1966), 1563-1581. doi: 10.1002/j.1538-7305.1966.tb01709.x.

[9]

R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics, 17 (1969), 416-429. doi: 10.1137/0117039.

[10]

N. G. Hall and C. N. Potts, The coordination of scheduling and batch deliveries, Annals of Operations Research, 135 (2005), 41-64. doi: 10.1007/s10479-005-6234-8.

[11]

C.-Y. Lee and Z.-L. Chen, Machine scheduling with transportation considerations, Journal of Scheduling, 4 (2001), 3-24. doi: 10.1002/1099-1425(200101/02)4:1<3::AID-JOS57>3.0.CO;2-D.

[12]

C.-L. Li, G. Vairaktarakis and C.-Y. Lee, Machine scheduling with deliveries to multiple customer locations, European Journal of Operational Research, 164 (2005), 39-51. doi: 10.1016/j.ejor.2003.11.022.

[13]

C.-S. Su, J. C.-H. Pan and T.-S. Hsu, A new heuristic algorithm for the machine scheduling problem with job delivery coordination, Theoretical Computer Science, 410 (2009), 2581-2591. doi: 10.1016/j.tcs.2009.02.019.

[14]

G. Wang and T. C. E. Cheng, Parallel machine scheduling with batch delivery costs, International Journal of Production Economics, 68 (2000), 177-183. doi: 10.1016/S0925-5273(99)00105-X.

[15]

X. Wang and T. C. E. Cheng, Machine scheduling with an availability constraint and job delivery coordination, Naval Research Logistics, 54 (2007), 11-20. doi: 10.1002/nav.20175.

[16]

W. Y. Zhong, G. Dosa and Z. Y. Tan, On the machine scheduling problem with job delivery coordination, European Journal of Operational Research, 182 (2007), 1057-1072. doi: 10.1016/j.ejor.2006.09.059.

show all references

References:
[1]

J. H. Ahmadi, R. H. Ahmadi, S. Dasu and C. S. Tang, Batching and scheduling jobs on batch and discrete processors, Operations Research, 40 (1992), 750-763. doi: 10.1287/opre.40.4.750.

[2]

Y.-C. Chang and C.-Y. Lee, Machine scheduling with job delivery coordination, European Journal of Operational Research, 158 (2004), 470-487. doi: 10.1016/S0377-2217(03)00364-3.

[3]

Z.-L. Chen, Integrated production and outbound distribution scheduling: Review and extensions, Operations Research, 58 (2010), 130-148. doi: 10.1287/opre.1080.0688.

[4]

Z.-L. Chen and G. Pundoor, Order assignment and scheduling in a supply chain, Operations Research, 54 (2006), 555-572. doi: 10.1287/opre.1060.0280.

[5]

Z.-L. Chen and G. Vairaktarakis, Integrated scheduling of production and distribution operations, Management Science, 51 (2005), 614-628. doi: 10.1287/mnsc.1040.0325.

[6]

H. N. Geismar, G. Laporte, L. Lei and C. Sriskandarajah, The integrated production and transportation scheduling problem for a product with a short lifespan, INFORMS Journal on Computing, 20 (2008), 21-33. doi: 10.1287/ijoc.1060.0208.

[7]

H. Gong and L. X. Tang, Scheduling production on parallel machines and batch delivery with limited waiting time constraint, Control and Decision, 26 (2011), 921-924 (in Chinese).

[8]

R. L. Graham, Bounds for certain multiprocessing anomalies, The Bell System Technical Journal, 45 (1966), 1563-1581. doi: 10.1002/j.1538-7305.1966.tb01709.x.

[9]

R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics, 17 (1969), 416-429. doi: 10.1137/0117039.

[10]

N. G. Hall and C. N. Potts, The coordination of scheduling and batch deliveries, Annals of Operations Research, 135 (2005), 41-64. doi: 10.1007/s10479-005-6234-8.

[11]

C.-Y. Lee and Z.-L. Chen, Machine scheduling with transportation considerations, Journal of Scheduling, 4 (2001), 3-24. doi: 10.1002/1099-1425(200101/02)4:1<3::AID-JOS57>3.0.CO;2-D.

[12]

C.-L. Li, G. Vairaktarakis and C.-Y. Lee, Machine scheduling with deliveries to multiple customer locations, European Journal of Operational Research, 164 (2005), 39-51. doi: 10.1016/j.ejor.2003.11.022.

[13]

C.-S. Su, J. C.-H. Pan and T.-S. Hsu, A new heuristic algorithm for the machine scheduling problem with job delivery coordination, Theoretical Computer Science, 410 (2009), 2581-2591. doi: 10.1016/j.tcs.2009.02.019.

[14]

G. Wang and T. C. E. Cheng, Parallel machine scheduling with batch delivery costs, International Journal of Production Economics, 68 (2000), 177-183. doi: 10.1016/S0925-5273(99)00105-X.

[15]

X. Wang and T. C. E. Cheng, Machine scheduling with an availability constraint and job delivery coordination, Naval Research Logistics, 54 (2007), 11-20. doi: 10.1002/nav.20175.

[16]

W. Y. Zhong, G. Dosa and Z. Y. Tan, On the machine scheduling problem with job delivery coordination, European Journal of Operational Research, 182 (2007), 1057-1072. doi: 10.1016/j.ejor.2006.09.059.

[1]

Jiayu Shen, Yuanguo Zhu. An uncertain programming model for single machine scheduling problem with batch delivery. Journal of Industrial and Management Optimization, 2019, 15 (2) : 577-593. doi: 10.3934/jimo.2018058

[2]

Yuzhong Zhang, Chunsong Bai, Qingguo Bai, Jianteng Xu. Duplicating in batch scheduling. Journal of Industrial and Management Optimization, 2007, 3 (4) : 685-692. doi: 10.3934/jimo.2007.3.685

[3]

Chengwen Jiao, Qi Feng. Research on the parallel–batch scheduling with linearly lookahead model. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3551-3558. doi: 10.3934/jimo.2020132

[4]

Ganggang Li, Xiwen Lu, Peihai Liu. The coordination of single-machine scheduling with availability constraints and delivery. Journal of Industrial and Management Optimization, 2016, 12 (2) : 757-770. doi: 10.3934/jimo.2016.12.757

[5]

Yunqiang Yin, T. C. E. Cheng, Jianyou Xu, Shuenn-Ren Cheng, Chin-Chia Wu. Single-machine scheduling with past-sequence-dependent delivery times and a linear deterioration. Journal of Industrial and Management Optimization, 2013, 9 (2) : 323-339. doi: 10.3934/jimo.2013.9.323

[6]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1795-1807. doi: 10.3934/jimo.2021044

[7]

Si-Han Wang, Dan-Yang Lv, Ji-Bo Wang. Research on position-dependent weights scheduling with delivery times and truncated sum-of-processing-times-based learning effect. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022066

[8]

Wenchang Luo, Lin Chen. Approximation schemes for scheduling a maintenance and linear deteriorating jobs. Journal of Industrial and Management Optimization, 2012, 8 (2) : 271-283. doi: 10.3934/jimo.2012.8.271

[9]

Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$-competitive algorithm for online scheduling on identical machines. Journal of Industrial and Management Optimization, 2015, 11 (1) : 185-198. doi: 10.3934/jimo.2015.11.185

[10]

Omer Faruk Yilmaz, Mehmet Bulent Durmusoglu. A performance comparison and evaluation of metaheuristics for a batch scheduling problem in a multi-hybrid cell manufacturing system with skilled workforce assignment. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1219-1249. doi: 10.3934/jimo.2018007

[11]

Chengxin Luo. Single machine batch scheduling problem to minimize makespan with controllable setup and jobs processing times. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 71-77. doi: 10.3934/naco.2015.5.71

[12]

Zhichao Geng, Jinjiang Yuan. Scheduling family jobs on an unbounded parallel-batch machine to minimize makespan and maximum flow time. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1479-1500. doi: 10.3934/jimo.2018017

[13]

Tao Zhang, W. Art Chaovalitwongse, Yue-Jie Zhang, P. M. Pardalos. The hot-rolling batch scheduling method based on the prize collecting vehicle routing problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 749-765. doi: 10.3934/jimo.2009.5.749

[14]

Jinjiang Yuan, Weiping Shang. A PTAS for the p-batch scheduling with pj = p to minimize total weighted completion time. Journal of Industrial and Management Optimization, 2005, 1 (3) : 353-358. doi: 10.3934/jimo.2005.1.353

[15]

Zheng Chang, Haoxun Chen, Farouk Yalaoui, Bo Dai. Adaptive large neighborhood search Algorithm for route planning of freight buses with pickup and delivery. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1771-1793. doi: 10.3934/jimo.2020045

[16]

Imed Kacem, Eugene Levner. An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs. Journal of Industrial and Management Optimization, 2016, 12 (3) : 811-817. doi: 10.3934/jimo.2016.12.811

[17]

Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391

[18]

Jingwen Zhang, Wanjun Liu, Wanlin Liu. An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers. Journal of Industrial and Management Optimization, 2022, 18 (1) : 1-24. doi: 10.3934/jimo.2020140

[19]

Weihua Liu, Andrew Klapper. AFSRs synthesis with the extended Euclidean rational approximation algorithm. Advances in Mathematics of Communications, 2017, 11 (1) : 139-150. doi: 10.3934/amc.2017008

[20]

David Julitz. Numerical approximation of atmospheric-ocean models with subdivision algorithm. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 429-447. doi: 10.3934/dcds.2007.18.429

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]