April  2014, 10(2): 363-381. doi: 10.3934/jimo.2014.10.363

Fractional order optimal control problems with free terminal time

1. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal, Portugal, Portugal

Received  December 2012 Revised  July 2013 Published  October 2013

We consider fractional order optimal control problems in which the dynamic control system involves integer and fractional order derivatives and the terminal time is free. Necessary conditions for a state/control/terminal-time triplet to be optimal are obtained. Situations with constraints present at the end time are also considered. Under appropriate assumptions, it is shown that the obtained necessary optimality conditions become sufficient. Numerical methods to solve the problems are presented, and some computational simulations are discussed in detail.
Citation: Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363
References:
[1]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems,, Nonlinear Dynam., 38 (2004), 323.  doi: 10.1007/s11071-004-3764-6.  Google Scholar

[2]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives,, J. Phys. A, 40 (2007), 6287.  doi: 10.1088/1751-8113/40/24/003.  Google Scholar

[3]

O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems,, J. Vib. Control, 14 (2008), 1291.  doi: 10.1177/1077546307087451.  Google Scholar

[4]

O. P. Agrawal, O. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables,, J. Vib. Control, 16 (2010), 1967.  doi: 10.1177/1077546309353361.  Google Scholar

[5]

T. M. Atanackovic and B. Stankovic, On a numerical scheme for solving differential equations of fractional order,, Mech. Res. Comm., 35 (2008), 429.  doi: 10.1016/j.mechrescom.2008.05.003.  Google Scholar

[6]

S. N. Avvakumov and Yu. N. Kiselev, Boundary value problem for ordinary differential equations with applications to optimal control,, in Spectral and Evolution Problems, (1999), 147.   Google Scholar

[7]

A. C. Chiang, Elements of Dynamic Optimization,, McGraw-Hill, (1992).   Google Scholar

[8]

G. S. F. Frederico and D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem,, Int. Math. Forum, 3 (2008), 479.   Google Scholar

[9]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory,, Nonlinear Dynam., 53 (2008), 215.  doi: 10.1007/s11071-007-9309-z.  Google Scholar

[10]

Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems,, Struct. Multidiscip. Optim., 38 (2009), 571.  doi: 10.1007/s00158-008-0307-7.  Google Scholar

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006).   Google Scholar

[12]

D. E. Kirk, Optimal Control Theory: An Introduction,, Prentice-Hall Inc., (1970).   Google Scholar

[13]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pac. J. Optim., 7 (2011), 63.   Google Scholar

[14]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependent stopping criteria,, Automatica J. IFAC, 48 (2012), 2116.  doi: 10.1016/j.automatica.2012.06.055.  Google Scholar

[15]

S. Liu, Q. Hu and Y. Xu, Optimal inventory control with fixed ordering cost for selling by Internet auctions,, J. Ind. Manag. Optim., 8 (2012), 19.  doi: 10.3934/jimo.2012.8.19.  Google Scholar

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations,, Imperial College Press, (2012).   Google Scholar

[17]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication, (1993).   Google Scholar

[18]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative,, Carpathian J. Math., 26 (2010), 210.   Google Scholar

[19]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems,, Signal Process., 91 (2011), 379.  doi: 10.1016/j.sigpro.2010.07.016.  Google Scholar

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative,, Numer. Funct. Anal. Optim., 33 (2012), 301.  doi: 10.1080/01630563.2011.647197.  Google Scholar

[21]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives,, Comput. Math. Appl., 64 (2012), 3090.  doi: 10.1016/j.camwa.2012.01.068.  Google Scholar

[22]

S. Pooseh, R. Almeida and D. F. M. Torres, Numerical approximations of fractional derivatives with applications,, Asian J. Control, 15 (2013), 698.  doi: 10.1002/asjc.617.  Google Scholar

[23]

C. Tricaud and Y. Chen, An approximate method for numerically solving fractional order optimal control problems of general form,, Comput. Math. Appl., 59 (2010), 1644.  doi: 10.1016/j.camwa.2009.08.006.  Google Scholar

[24]

C. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics,, Int. J. Differ. Equ., 2010 (2010).  doi: 10.1155/2010/461048.  Google Scholar

show all references

References:
[1]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems,, Nonlinear Dynam., 38 (2004), 323.  doi: 10.1007/s11071-004-3764-6.  Google Scholar

[2]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives,, J. Phys. A, 40 (2007), 6287.  doi: 10.1088/1751-8113/40/24/003.  Google Scholar

[3]

O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems,, J. Vib. Control, 14 (2008), 1291.  doi: 10.1177/1077546307087451.  Google Scholar

[4]

O. P. Agrawal, O. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables,, J. Vib. Control, 16 (2010), 1967.  doi: 10.1177/1077546309353361.  Google Scholar

[5]

T. M. Atanackovic and B. Stankovic, On a numerical scheme for solving differential equations of fractional order,, Mech. Res. Comm., 35 (2008), 429.  doi: 10.1016/j.mechrescom.2008.05.003.  Google Scholar

[6]

S. N. Avvakumov and Yu. N. Kiselev, Boundary value problem for ordinary differential equations with applications to optimal control,, in Spectral and Evolution Problems, (1999), 147.   Google Scholar

[7]

A. C. Chiang, Elements of Dynamic Optimization,, McGraw-Hill, (1992).   Google Scholar

[8]

G. S. F. Frederico and D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem,, Int. Math. Forum, 3 (2008), 479.   Google Scholar

[9]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory,, Nonlinear Dynam., 53 (2008), 215.  doi: 10.1007/s11071-007-9309-z.  Google Scholar

[10]

Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems,, Struct. Multidiscip. Optim., 38 (2009), 571.  doi: 10.1007/s00158-008-0307-7.  Google Scholar

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006).   Google Scholar

[12]

D. E. Kirk, Optimal Control Theory: An Introduction,, Prentice-Hall Inc., (1970).   Google Scholar

[13]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pac. J. Optim., 7 (2011), 63.   Google Scholar

[14]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependent stopping criteria,, Automatica J. IFAC, 48 (2012), 2116.  doi: 10.1016/j.automatica.2012.06.055.  Google Scholar

[15]

S. Liu, Q. Hu and Y. Xu, Optimal inventory control with fixed ordering cost for selling by Internet auctions,, J. Ind. Manag. Optim., 8 (2012), 19.  doi: 10.3934/jimo.2012.8.19.  Google Scholar

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations,, Imperial College Press, (2012).   Google Scholar

[17]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication, (1993).   Google Scholar

[18]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative,, Carpathian J. Math., 26 (2010), 210.   Google Scholar

[19]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems,, Signal Process., 91 (2011), 379.  doi: 10.1016/j.sigpro.2010.07.016.  Google Scholar

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative,, Numer. Funct. Anal. Optim., 33 (2012), 301.  doi: 10.1080/01630563.2011.647197.  Google Scholar

[21]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives,, Comput. Math. Appl., 64 (2012), 3090.  doi: 10.1016/j.camwa.2012.01.068.  Google Scholar

[22]

S. Pooseh, R. Almeida and D. F. M. Torres, Numerical approximations of fractional derivatives with applications,, Asian J. Control, 15 (2013), 698.  doi: 10.1002/asjc.617.  Google Scholar

[23]

C. Tricaud and Y. Chen, An approximate method for numerically solving fractional order optimal control problems of general form,, Comput. Math. Appl., 59 (2010), 1644.  doi: 10.1016/j.camwa.2009.08.006.  Google Scholar

[24]

C. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics,, Int. J. Differ. Equ., 2010 (2010).  doi: 10.1155/2010/461048.  Google Scholar

[1]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[2]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[3]

Tuğba Akman Yıldız, Amin Jajarmi, Burak Yıldız, Dumitru Baleanu. New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 407-428. doi: 10.3934/dcdss.2020023

[4]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[5]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[6]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[7]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[8]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[9]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[10]

Jingtao Shi, Juanjuan Xu, Huanshui Zhang. Stochastic recursive optimal control problem with time delay and applications. Mathematical Control & Related Fields, 2015, 5 (4) : 859-888. doi: 10.3934/mcrf.2015.5.859

[11]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[12]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[13]

Mohammad Hadi Noori Skandari, Marzieh Habibli, Alireza Nazemi. A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019035

[14]

Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100

[15]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[16]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[17]

Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control & Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020

[18]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[19]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[20]

Chonghu Guan, Xun Li, Zuo Quan Xu, Fahuai Yi. A stochastic control problem and related free boundaries in finance. Mathematical Control & Related Fields, 2017, 7 (4) : 563-584. doi: 10.3934/mcrf.2017021

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (37)

[Back to Top]