April  2014, 10(2): 383-396. doi: 10.3934/jimo.2014.10.383

Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms

1. 

School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, 5005, Australia, Australia

Received  October 2012 Revised  July 2013 Published  October 2013

Verification of semiconductor chip designs is commonly driven by single goal orientated measures. With increasing design complexities, this approach is no longer effective. We enhance the effectiveness of coverage driven design verifications by applying multi-objective optimization techniques. The technique is based on genetic evolutionary algorithms. Difficulties with conflicting test objectives and selection of tests to achieve multiple verification goals in the genetic evolutionary framework are also addressed.
Citation: Adriel Cheng, Cheng-Chew Lim. Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms. Journal of Industrial & Management Optimization, 2014, 10 (2) : 383-396. doi: 10.3934/jimo.2014.10.383
References:
[1]

T. Bao and B. Mordukhovich, Refined necessary conditions in multi-objective optimization with applications to microeconomic modeling,, Discrete Contin. Dyn. Syst., 31 (2011), 1069.  doi: 10.3934/dcds.2011.31.1069.  Google Scholar

[2]

J. Bergeron, Writing Testbenches using SystemVerilog,, $1^{st}$ edition, (1994).   Google Scholar

[3]

H. Bonnel and N. S. Pham, Non-smooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions,, J. Ind. Manag. Optim., 7 (2011), 789.  doi: 10.3934/jimo.2011.7.789.  Google Scholar

[4]

A. Cheng and C. C. Lim, Markov modeling and parameterization of genetic evolutionary test generation,, J. Global Optim., 51 (2011), 743.  doi: 10.1007/s10898-011-9682-5.  Google Scholar

[5]

A. Cheng, C.-C. Lim, Y. Sun, H. He, Z. Zhou and T. Lei, Using genetic evolutionary software application testing to verify a DSP SoC,, in 4th IEEE Int. Workshop on Electronic Design, (2008), 20.  doi: 10.1109/DELTA.2008.31.  Google Scholar

[6]

A. Cheng, A. Parashkevov and C.-C. Lim, A software test program generator for verifying system-on-chips,, in 10th IEEE Int. High Level Design Validation and Test Workshop (HLDVT'05), (2005), 79.  doi: 10.1109/HLDVT.2005.1568818.  Google Scholar

[7]

C. A. C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques,, Journal of Knowledge and Information Systems, 1 (1999), 269.  doi: 10.1007/BF03325101.  Google Scholar

[8]

F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, Code generation for functional validation of pipelined microprocessors,, Journal of Electronic Testing: Theory and Applications, 20 (2004), 269.   Google Scholar

[9]

F. Corno, P. Prinetto, M. Rebaudengo and M. S. Reorda, GATTO: A genetic algorithm for automatic test pattern generation for large synchronous sequential circuits,, in IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, (1996), 991.  doi: 10.1109/43.511578.  Google Scholar

[10]

S. Fine and A. Ziv, Coverage directed test generation for functional verification using Bayesian networks,, in Proc. 40th Design Automation Conference, (2003), 286.   Google Scholar

[11]

C. M. Fonseca and P. J. Flemming, Genetic algorithms for multi-objective optimization: Formulation, discussion, and generalization,, in 5th Int. Conf. on Genetic Algorithms, (1993), 416.   Google Scholar

[12]

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,, Addison-Wesley, (1989).   Google Scholar

[13]

J. Horn, N. Nafpliotis and D. E. Goldberg, A Niched Pareto genetic algorithm for multiobjective optimization,, in Proceedings of the First IEEE Conference on Evolutionary Computation, (1994), 82.  doi: 10.1109/ICEC.1994.350037.  Google Scholar

[14]

W. Jakob, M. Gorges-Schleuter and C. Blume, Application of genetic algorithms to task planning and learning,, in Parallel Problem Solving from Nature, (1992), 291.   Google Scholar

[15]

T.-F. Liang and H.-W. Cheng, Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method,, J. Ind. Manag. Optim., 7 (2011), 365.  doi: 10.3934/jimo.2011.7.365.  Google Scholar

[16]

G. Nativ, S. Mittermaier, S. Ur and A. Ziv, Cost evaluation of coverage directed test generation for the IBM mainframe,, in Proceedings of the 2001 IEEE International Test Conference, (2001), 793.  doi: 10.1109/TEST.2001.966701.  Google Scholar

[17]

T. Ray and R. Sarker, EA for solving combined machine layout and job assignment problems,, J. Ind. Manag. Optim., 4 (2008), 631.  doi: 10.3934/jimo.2008.4.631.  Google Scholar

[18]

A. Samarah, A. Habibi, S. Tahar and N. Kharma, Automated coverage directed test generation using a cell-based genetic algorithm,, in IEEE Int. High Level Design Validation and Test Workshop (HLDVT'06), (2006), 19.  doi: 10.1109/HLDVT.2006.319996.  Google Scholar

[19]

E. Sanchez, M. Schillaci and G. Squillero, Evolutionary Optimization: The GP Toolkit,, $1^{st}$ edition, (2011).   Google Scholar

[20]

E. Sanchez and G. Squillero, Evolutionary techniques applied to hardware optimization problems: Test and verification of advanced processors,, in Advances in Evolutionary Computing for System Design (eds. L. C. Jain, (2007), 83.  doi: 10.1007/978-3-540-72377-6_13.  Google Scholar

[21]

N. Srinivas and K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms,, Evolutionary Computation, 2 (1994), 221.  doi: 10.1162/evco.1994.2.3.221.  Google Scholar

[22]

H. Tamaki, H. Kita and S. Kobayashi, Multi-objective optimization by genetic algorithms: A review,, in Proc. IEEE Int. Conference on Evolutionary Computation, (1996), 517.  doi: 10.1109/ICEC.1996.542653.  Google Scholar

[23]

S. Tasiran, F. Fallah, D. G. Chineery, S. J. Weber and K. Keutzer, A functional validation technique: Biased-random simulation guided by observability-based coverage,, in IEEE Int. Conference on Computer Design, (2001), 82.  doi: 10.1109/ICCD.2001.955007.  Google Scholar

[24]

P. B. Wilson and M. D. Macleod, Low implementation cost IIR digital filter design using genetic algorithms,, in IEE/IEEE Workshop on Natural Algorithms in Signal Processing, (1993), 41.   Google Scholar

[25]

E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach,, in IEEE Trans. on Evolutionary Computation, (1999), 257.  doi: 10.1109/4235.797969.  Google Scholar

[26]

, Nios II Hardware Development Tutorial,, Development manual of Altera Inc., (2005).   Google Scholar

show all references

References:
[1]

T. Bao and B. Mordukhovich, Refined necessary conditions in multi-objective optimization with applications to microeconomic modeling,, Discrete Contin. Dyn. Syst., 31 (2011), 1069.  doi: 10.3934/dcds.2011.31.1069.  Google Scholar

[2]

J. Bergeron, Writing Testbenches using SystemVerilog,, $1^{st}$ edition, (1994).   Google Scholar

[3]

H. Bonnel and N. S. Pham, Non-smooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions,, J. Ind. Manag. Optim., 7 (2011), 789.  doi: 10.3934/jimo.2011.7.789.  Google Scholar

[4]

A. Cheng and C. C. Lim, Markov modeling and parameterization of genetic evolutionary test generation,, J. Global Optim., 51 (2011), 743.  doi: 10.1007/s10898-011-9682-5.  Google Scholar

[5]

A. Cheng, C.-C. Lim, Y. Sun, H. He, Z. Zhou and T. Lei, Using genetic evolutionary software application testing to verify a DSP SoC,, in 4th IEEE Int. Workshop on Electronic Design, (2008), 20.  doi: 10.1109/DELTA.2008.31.  Google Scholar

[6]

A. Cheng, A. Parashkevov and C.-C. Lim, A software test program generator for verifying system-on-chips,, in 10th IEEE Int. High Level Design Validation and Test Workshop (HLDVT'05), (2005), 79.  doi: 10.1109/HLDVT.2005.1568818.  Google Scholar

[7]

C. A. C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques,, Journal of Knowledge and Information Systems, 1 (1999), 269.  doi: 10.1007/BF03325101.  Google Scholar

[8]

F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, Code generation for functional validation of pipelined microprocessors,, Journal of Electronic Testing: Theory and Applications, 20 (2004), 269.   Google Scholar

[9]

F. Corno, P. Prinetto, M. Rebaudengo and M. S. Reorda, GATTO: A genetic algorithm for automatic test pattern generation for large synchronous sequential circuits,, in IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, (1996), 991.  doi: 10.1109/43.511578.  Google Scholar

[10]

S. Fine and A. Ziv, Coverage directed test generation for functional verification using Bayesian networks,, in Proc. 40th Design Automation Conference, (2003), 286.   Google Scholar

[11]

C. M. Fonseca and P. J. Flemming, Genetic algorithms for multi-objective optimization: Formulation, discussion, and generalization,, in 5th Int. Conf. on Genetic Algorithms, (1993), 416.   Google Scholar

[12]

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,, Addison-Wesley, (1989).   Google Scholar

[13]

J. Horn, N. Nafpliotis and D. E. Goldberg, A Niched Pareto genetic algorithm for multiobjective optimization,, in Proceedings of the First IEEE Conference on Evolutionary Computation, (1994), 82.  doi: 10.1109/ICEC.1994.350037.  Google Scholar

[14]

W. Jakob, M. Gorges-Schleuter and C. Blume, Application of genetic algorithms to task planning and learning,, in Parallel Problem Solving from Nature, (1992), 291.   Google Scholar

[15]

T.-F. Liang and H.-W. Cheng, Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method,, J. Ind. Manag. Optim., 7 (2011), 365.  doi: 10.3934/jimo.2011.7.365.  Google Scholar

[16]

G. Nativ, S. Mittermaier, S. Ur and A. Ziv, Cost evaluation of coverage directed test generation for the IBM mainframe,, in Proceedings of the 2001 IEEE International Test Conference, (2001), 793.  doi: 10.1109/TEST.2001.966701.  Google Scholar

[17]

T. Ray and R. Sarker, EA for solving combined machine layout and job assignment problems,, J. Ind. Manag. Optim., 4 (2008), 631.  doi: 10.3934/jimo.2008.4.631.  Google Scholar

[18]

A. Samarah, A. Habibi, S. Tahar and N. Kharma, Automated coverage directed test generation using a cell-based genetic algorithm,, in IEEE Int. High Level Design Validation and Test Workshop (HLDVT'06), (2006), 19.  doi: 10.1109/HLDVT.2006.319996.  Google Scholar

[19]

E. Sanchez, M. Schillaci and G. Squillero, Evolutionary Optimization: The GP Toolkit,, $1^{st}$ edition, (2011).   Google Scholar

[20]

E. Sanchez and G. Squillero, Evolutionary techniques applied to hardware optimization problems: Test and verification of advanced processors,, in Advances in Evolutionary Computing for System Design (eds. L. C. Jain, (2007), 83.  doi: 10.1007/978-3-540-72377-6_13.  Google Scholar

[21]

N. Srinivas and K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms,, Evolutionary Computation, 2 (1994), 221.  doi: 10.1162/evco.1994.2.3.221.  Google Scholar

[22]

H. Tamaki, H. Kita and S. Kobayashi, Multi-objective optimization by genetic algorithms: A review,, in Proc. IEEE Int. Conference on Evolutionary Computation, (1996), 517.  doi: 10.1109/ICEC.1996.542653.  Google Scholar

[23]

S. Tasiran, F. Fallah, D. G. Chineery, S. J. Weber and K. Keutzer, A functional validation technique: Biased-random simulation guided by observability-based coverage,, in IEEE Int. Conference on Computer Design, (2001), 82.  doi: 10.1109/ICCD.2001.955007.  Google Scholar

[24]

P. B. Wilson and M. D. Macleod, Low implementation cost IIR digital filter design using genetic algorithms,, in IEE/IEEE Workshop on Natural Algorithms in Signal Processing, (1993), 41.   Google Scholar

[25]

E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach,, in IEEE Trans. on Evolutionary Computation, (1999), 257.  doi: 10.1109/4235.797969.  Google Scholar

[26]

, Nios II Hardware Development Tutorial,, Development manual of Altera Inc., (2005).   Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[3]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[4]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[5]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[9]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[10]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[11]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[12]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[17]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]