-
Previous Article
A ladder method for linear semi-infinite programming
- JIMO Home
- This Issue
-
Next Article
Fractional order optimal control problems with free terminal time
Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms
1. | School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, 5005, Australia, Australia |
References:
[1] |
T. Bao and B. Mordukhovich, Refined necessary conditions in multi-objective optimization with applications to microeconomic modeling, Discrete Contin. Dyn. Syst., 31 (2011), 1069-1096.
doi: 10.3934/dcds.2011.31.1069. |
[2] |
J. Bergeron, Writing Testbenches using SystemVerilog, $1^{st}$ edition, Springer Science + Business Media, New York, 1994. |
[3] |
H. Bonnel and N. S. Pham, Non-smooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions, J. Ind. Manag. Optim., 7 (2011), 789-809.
doi: 10.3934/jimo.2011.7.789. |
[4] |
A. Cheng and C. C. Lim, Markov modeling and parameterization of genetic evolutionary test generation, J. Global Optim., 51 (2011), 743-751.
doi: 10.1007/s10898-011-9682-5. |
[5] |
A. Cheng, C.-C. Lim, Y. Sun, H. He, Z. Zhou and T. Lei, Using genetic evolutionary software application testing to verify a DSP SoC, in 4th IEEE Int. Workshop on Electronic Design, Test & Applications, IEEE Computer Society, Hong Kong, 2008, 20-25.
doi: 10.1109/DELTA.2008.31. |
[6] |
A. Cheng, A. Parashkevov and C.-C. Lim, A software test program generator for verifying system-on-chips, in 10th IEEE Int. High Level Design Validation and Test Workshop (HLDVT'05), Napa Valley, CA, 2005, 79-86.
doi: 10.1109/HLDVT.2005.1568818. |
[7] |
C. A. C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques, Journal of Knowledge and Information Systems, 1 (1999), 269-308.
doi: 10.1007/BF03325101. |
[8] |
F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, Code generation for functional validation of pipelined microprocessors, Journal of Electronic Testing: Theory and Applications, 20 (2004), 269-278. |
[9] |
F. Corno, P. Prinetto, M. Rebaudengo and M. S. Reorda, GATTO: A genetic algorithm for automatic test pattern generation for large synchronous sequential circuits, in IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 15, IEEE Council on Electronic Design Automation, 1996, 991-1000.
doi: 10.1109/43.511578. |
[10] |
S. Fine and A. Ziv, Coverage directed test generation for functional verification using Bayesian networks, in Proc. 40th Design Automation Conference, New Orleans, LA, 2003, 286-291. |
[11] |
C. M. Fonseca and P. J. Flemming, Genetic algorithms for multi-objective optimization: Formulation, discussion, and generalization, in 5th Int. Conf. on Genetic Algorithms, Morgan Kaufmann, 1993, 416-423. |
[12] |
D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Massachusetts, 1989. |
[13] |
J. Horn, N. Nafpliotis and D. E. Goldberg, A Niched Pareto genetic algorithm for multiobjective optimization, in Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Computation, Orlando, FL, 1994, 82-87.
doi: 10.1109/ICEC.1994.350037. |
[14] |
W. Jakob, M. Gorges-Schleuter and C. Blume, Application of genetic algorithms to task planning and learning, in Parallel Problem Solving from Nature, 2nd Workshop, Lecture Notes in Computer Science, 1992, 291-300. |
[15] |
T.-F. Liang and H.-W. Cheng, Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method, J. Ind. Manag. Optim., 7 (2011), 365-383.
doi: 10.3934/jimo.2011.7.365. |
[16] |
G. Nativ, S. Mittermaier, S. Ur and A. Ziv, Cost evaluation of coverage directed test generation for the IBM mainframe, in Proceedings of the 2001 IEEE International Test Conference, Baltimore, MD, 2001, 793-802.
doi: 10.1109/TEST.2001.966701. |
[17] |
T. Ray and R. Sarker, EA for solving combined machine layout and job assignment problems, J. Ind. Manag. Optim., 4 (2008), 631-646.
doi: 10.3934/jimo.2008.4.631. |
[18] |
A. Samarah, A. Habibi, S. Tahar and N. Kharma, Automated coverage directed test generation using a cell-based genetic algorithm, in IEEE Int. High Level Design Validation and Test Workshop (HLDVT'06), Monterey, CA, 2006, 19-26.
doi: 10.1109/HLDVT.2006.319996. |
[19] |
E. Sanchez, M. Schillaci and G. Squillero, Evolutionary Optimization: The GP Toolkit, $1^{st}$ edition, Springer Science + Business Media, New York, 2011. |
[20] |
E. Sanchez and G. Squillero, Evolutionary techniques applied to hardware optimization problems: Test and verification of advanced processors, in Advances in Evolutionary Computing for System Design (eds. L. C. Jain, V. Palade and D. Srinivasan), Studies in Computational Intelligence, 66, Springer, Berlin-Heidelberg, 2007, 83-106.
doi: 10.1007/978-3-540-72377-6_13. |
[21] |
N. Srinivas and K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation, 2 (1994), 221-248.
doi: 10.1162/evco.1994.2.3.221. |
[22] |
H. Tamaki, H. Kita and S. Kobayashi, Multi-objective optimization by genetic algorithms: A review, in Proc. IEEE Int. Conference on Evolutionary Computation, Nagoya, Japan, 1996, 517-522.
doi: 10.1109/ICEC.1996.542653. |
[23] |
S. Tasiran, F. Fallah, D. G. Chineery, S. J. Weber and K. Keutzer, A functional validation technique: Biased-random simulation guided by observability-based coverage, in IEEE Int. Conference on Computer Design, Austin, TX, 2001, 82-88.
doi: 10.1109/ICCD.2001.955007. |
[24] |
P. B. Wilson and M. D. Macleod, Low implementation cost IIR digital filter design using genetic algorithms, in IEE/IEEE Workshop on Natural Algorithms in Signal Processing, Chelmsford, Essex, (1993), 41-48. |
[25] |
E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, in IEEE Trans. on Evolutionary Computation, Vol. 3, IEEE Computational Intelligence Society, 1999, 257-271.
doi: 10.1109/4235.797969. |
[26] |
, Nios II Hardware Development Tutorial,, Development manual of Altera Inc., (2005).
|
show all references
References:
[1] |
T. Bao and B. Mordukhovich, Refined necessary conditions in multi-objective optimization with applications to microeconomic modeling, Discrete Contin. Dyn. Syst., 31 (2011), 1069-1096.
doi: 10.3934/dcds.2011.31.1069. |
[2] |
J. Bergeron, Writing Testbenches using SystemVerilog, $1^{st}$ edition, Springer Science + Business Media, New York, 1994. |
[3] |
H. Bonnel and N. S. Pham, Non-smooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions, J. Ind. Manag. Optim., 7 (2011), 789-809.
doi: 10.3934/jimo.2011.7.789. |
[4] |
A. Cheng and C. C. Lim, Markov modeling and parameterization of genetic evolutionary test generation, J. Global Optim., 51 (2011), 743-751.
doi: 10.1007/s10898-011-9682-5. |
[5] |
A. Cheng, C.-C. Lim, Y. Sun, H. He, Z. Zhou and T. Lei, Using genetic evolutionary software application testing to verify a DSP SoC, in 4th IEEE Int. Workshop on Electronic Design, Test & Applications, IEEE Computer Society, Hong Kong, 2008, 20-25.
doi: 10.1109/DELTA.2008.31. |
[6] |
A. Cheng, A. Parashkevov and C.-C. Lim, A software test program generator for verifying system-on-chips, in 10th IEEE Int. High Level Design Validation and Test Workshop (HLDVT'05), Napa Valley, CA, 2005, 79-86.
doi: 10.1109/HLDVT.2005.1568818. |
[7] |
C. A. C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques, Journal of Knowledge and Information Systems, 1 (1999), 269-308.
doi: 10.1007/BF03325101. |
[8] |
F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, Code generation for functional validation of pipelined microprocessors, Journal of Electronic Testing: Theory and Applications, 20 (2004), 269-278. |
[9] |
F. Corno, P. Prinetto, M. Rebaudengo and M. S. Reorda, GATTO: A genetic algorithm for automatic test pattern generation for large synchronous sequential circuits, in IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 15, IEEE Council on Electronic Design Automation, 1996, 991-1000.
doi: 10.1109/43.511578. |
[10] |
S. Fine and A. Ziv, Coverage directed test generation for functional verification using Bayesian networks, in Proc. 40th Design Automation Conference, New Orleans, LA, 2003, 286-291. |
[11] |
C. M. Fonseca and P. J. Flemming, Genetic algorithms for multi-objective optimization: Formulation, discussion, and generalization, in 5th Int. Conf. on Genetic Algorithms, Morgan Kaufmann, 1993, 416-423. |
[12] |
D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Massachusetts, 1989. |
[13] |
J. Horn, N. Nafpliotis and D. E. Goldberg, A Niched Pareto genetic algorithm for multiobjective optimization, in Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Computation, Orlando, FL, 1994, 82-87.
doi: 10.1109/ICEC.1994.350037. |
[14] |
W. Jakob, M. Gorges-Schleuter and C. Blume, Application of genetic algorithms to task planning and learning, in Parallel Problem Solving from Nature, 2nd Workshop, Lecture Notes in Computer Science, 1992, 291-300. |
[15] |
T.-F. Liang and H.-W. Cheng, Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method, J. Ind. Manag. Optim., 7 (2011), 365-383.
doi: 10.3934/jimo.2011.7.365. |
[16] |
G. Nativ, S. Mittermaier, S. Ur and A. Ziv, Cost evaluation of coverage directed test generation for the IBM mainframe, in Proceedings of the 2001 IEEE International Test Conference, Baltimore, MD, 2001, 793-802.
doi: 10.1109/TEST.2001.966701. |
[17] |
T. Ray and R. Sarker, EA for solving combined machine layout and job assignment problems, J. Ind. Manag. Optim., 4 (2008), 631-646.
doi: 10.3934/jimo.2008.4.631. |
[18] |
A. Samarah, A. Habibi, S. Tahar and N. Kharma, Automated coverage directed test generation using a cell-based genetic algorithm, in IEEE Int. High Level Design Validation and Test Workshop (HLDVT'06), Monterey, CA, 2006, 19-26.
doi: 10.1109/HLDVT.2006.319996. |
[19] |
E. Sanchez, M. Schillaci and G. Squillero, Evolutionary Optimization: The GP Toolkit, $1^{st}$ edition, Springer Science + Business Media, New York, 2011. |
[20] |
E. Sanchez and G. Squillero, Evolutionary techniques applied to hardware optimization problems: Test and verification of advanced processors, in Advances in Evolutionary Computing for System Design (eds. L. C. Jain, V. Palade and D. Srinivasan), Studies in Computational Intelligence, 66, Springer, Berlin-Heidelberg, 2007, 83-106.
doi: 10.1007/978-3-540-72377-6_13. |
[21] |
N. Srinivas and K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation, 2 (1994), 221-248.
doi: 10.1162/evco.1994.2.3.221. |
[22] |
H. Tamaki, H. Kita and S. Kobayashi, Multi-objective optimization by genetic algorithms: A review, in Proc. IEEE Int. Conference on Evolutionary Computation, Nagoya, Japan, 1996, 517-522.
doi: 10.1109/ICEC.1996.542653. |
[23] |
S. Tasiran, F. Fallah, D. G. Chineery, S. J. Weber and K. Keutzer, A functional validation technique: Biased-random simulation guided by observability-based coverage, in IEEE Int. Conference on Computer Design, Austin, TX, 2001, 82-88.
doi: 10.1109/ICCD.2001.955007. |
[24] |
P. B. Wilson and M. D. Macleod, Low implementation cost IIR digital filter design using genetic algorithms, in IEE/IEEE Workshop on Natural Algorithms in Signal Processing, Chelmsford, Essex, (1993), 41-48. |
[25] |
E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, in IEEE Trans. on Evolutionary Computation, Vol. 3, IEEE Computational Intelligence Society, 1999, 257-271.
doi: 10.1109/4235.797969. |
[26] |
, Nios II Hardware Development Tutorial,, Development manual of Altera Inc., (2005).
|
[1] |
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 |
[2] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[3] |
Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453 |
[4] |
Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021179 |
[5] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051 |
[6] |
Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088 |
[7] |
Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021208 |
[8] |
Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 |
[9] |
Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177 |
[10] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[11] |
Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 |
[12] |
Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089 |
[13] |
Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021169 |
[14] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1651-1663. doi: 10.3934/jimo.2021037 |
[15] |
Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1203-1220. doi: 10.3934/jimo.2018200 |
[16] |
Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055 |
[17] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[18] |
Peter Giesl, Najla Mohammed. Verification estimates for the construction of Lyapunov functions using meshfree collocation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4955-4981. doi: 10.3934/dcdsb.2019040 |
[19] |
Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068 |
[20] |
Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]