Citation: |
[1] |
E. J. Anderson and A. S. Lewis, An extension of the simplex algorithm for semi-infinite linear programming, Mathematical Programming, 44 (1989), 247-269.doi: 10.1007/BF01587092. |
[2] |
B. Betrò, An accelerated central cutting plane algorithm for semi-infinite linear programming, Mathematical Programming, 101 (2004), 479-495.doi: 10.1007/s10107-003-0492-5. |
[3] |
D. den Hertog, J. Kaliski, C. Roos and T. Terlaky, A logarithmic barrier cutting plane method for convex programming, Annals of Operations Research, 58 (1995), 69-98.doi: 10.1007/BF02032162. |
[4] |
M. C. Ferris and A. B. Philpott, An interior point algorithm for semi-infinite linear programming, Mathematical Programming, 43 (1989), 257-276.doi: 10.1007/BF01582293. |
[5] |
M. A. Goberna and M. A. López, Linear Semi-infinite Optimization, Wiley Series in Mathematical Methods in Practice, 2, John Wiley & Sons, Ltd., Chichester, 1998. |
[6] |
M. A. Goberna, Linear semi-infinite optimization: Recent advances, in Continuous Optimization (eds. V. Jeyakumar and A. M. Rubinov), Appl. Optim., 99, Springer, New York, 2005, 3-22.doi: 10.1007/0-387-26771-9_1. |
[7] |
R. Hettich, A review of numerical methods for semi-infinite optimization, in Semi-infinite Programming and Applications (eds. A. V. Fiacco and K. O. Kortanek), Lecture Notes in Econom. and Math. Systems, 215, Springer, Berlin, 1983, 158-178.doi: 10.1007/978-3-642-46477-5_11. |
[8] |
R. Hettich, An implementation of a discretization method for semi-infinite programming, Mathematical Programming, 34 (1986), 354-361.doi: 10.1007/BF01582235. |
[9] |
R. Hettich and K. O. Kortanek, Semi-infinite programming: Theory, methods, and applications, SIAM Rev., 35 (1993), 380-429.doi: 10.1137/1035089. |
[10] |
S. Ito, Y. Liu and K. L. Teo, A dual parametrization method for convex semi-infinite programming, Ann. Oper. Res., 98 (2000), 189-213.doi: 10.1023/A:1019208524259. |
[11] |
A. Kaplan and R. Tichatschke, Proximal interior point method for convex semi-infinite programming, Optim. Methods Softw., 15 (2001), 87-119.doi: 10.1080/10556780108805813. |
[12] |
Y. Liu, An exterior point method for linear programming based on inclusive normal cones, J. Ind. Manag. Optim., 6 (2010), 825-846.doi: 10.3934/jimo.2010.6.825. |
[13] |
Y. Liu, Duality theorem in linear programming: From trichotomy to quadrichotomy, J. Ind. Manag. Optim., 7 (2011), 1003-1011.doi: 10.3934/jimo.2011.7.1003. |
[14] |
Y. Liu and K. L. Teo, A bridging method for global optimization, J. Austral. Math. Soc. Ser. B, 41 (1999), 41-57.doi: 10.1017/S0334270000011024. |
[15] |
Y. Liu, K. L. Teo and S. Y. Wu, A New quadratic semi-infinite programming algorithm based on dual parametrization, J. Global Optim., 29 (2004), 401-413.doi: 10.1023/B:JOGO.0000047910.80739.95. |
[16] |
R. Reemtsen, Discretization methods for the solution of semi-infinite programming problems, J. Optim. Theory Appl., 71 (1991), 85-103.doi: 10.1007/BF00940041. |
[17] |
G. A. Watson, Lagrangian methods for semi-infinite programming problems, in Infinite Programming, Lecture Notes in Economics and Mathematical Systems (eds. E. J. Anderson and A. B. Philpott), Lecture Notes in Econom. and Math. Systems, 259, Springer, Berlin, 1985, 90-107.doi: 10.1007/978-3-642-46564-2_8. |
[18] |
S. Y. Wu, S. C. Fang and C. J. Lin, Relaxed cutting plane method for solving linear semi-infinite programming problems, J. Optim. Theory Appl., 99 (1998), 759-779.doi: 10.1023/A:1021763419562. |